Publications by authors named "Piyush Dak"

Low cost, portable sensors can transform health care by bringing easily available diagnostic devices to low and middle income population, particularly in developing countries. Sample preparation, analyte handling and labeling are primary cost concerns for traditional lab-based diagnostic systems. Lab-on-a-chip (LoC) platforms based on droplet-based microfluidics promise to integrate and automate these complex and expensive laboratory procedures onto a single chip; the cost will be further reduced if label-free biosensors could be integrated onto the LoC platforms.

View Article and Find Full Text PDF

Large-area and highly crystalline CVD-grown multilayer MoSe2 films exhibit a well-defined crystal structure (2H phase) and large grains reaching several hundred micrometers. Multilayer MoSe2 transistors exhibit high mobility up to 121 cm(2) V(-1) s(-1) and excellent mechanical stability. These results suggest that high mobility materials will be indispensable for various future applications such as high-resolution displays and human-centric soft electronics.

View Article and Find Full Text PDF

The ability to control the ionic environment in saline waters and aqueous electrolytes is useful for desalination as well as electronic biosensing. We demonstrate a method of electronic desalting at micro-scale through on-chip micro electrodes. We show that, while desalting is limited in bulk solutions with unlimited availability of salts, significant desalting of ≥1 mM solutions can be achieved in sub-nanoliter volume droplets with diameters of ∼250 m.

View Article and Find Full Text PDF

Correction for 'Non-faradaic impedance characterization of an evaporating droplet for microfluidic and biosensing applications' by Piyush Dak et al., Lab Chip, 2014, 14, 2469-2479.

View Article and Find Full Text PDF

We present a MoS2 biosensor to electrically detect prostate specific antigen (PSA) in a highly sensitive and label-free manner. Unlike previous MoS2-FET-based biosensors, the device configuration of our biosensors does not require a dielectric layer such as HfO2 due to the hydrophobicity of MoS2. Such an oxide-free operation improves sensitivity and simplifies sensor design.

View Article and Find Full Text PDF

We have developed a general numerical/analytical theory of non-faradaic impedance of an evaporating droplet, and validated the model by experiments involving droplets of various analyte concentrations deposited on a surface defined by coplanar electrodes. The impedance of the droplet Z(n0,t,f) is analyzed as a function of the concentration (n0) of the ions in the solution, the measurement frequency (f) and the evaporation time (t). We illustrate the versatility of the model by determining the sensitivity enhancement α(t) of the droplet-based impedimetric nano-biosensor under different regimes of operation.

View Article and Find Full Text PDF

Label-free, rapid detection of biomolecules in microliter volumes of highly diluted solutions (sub-femtomolar) is of essential importance for numerous applications in medical diagnostics, food safety, and chem-bio sensing for homeland security. At ultra-low concentrations, regardless of the sensitivity of the detection approach, the sensor response time is limited by physical diffusion of molecules towards the sensor surface. We have developed a fast, low cost, non-faradaic impedance sensing method for detection of synthetic DNA molecules in DI water at attomolar levels by beating the diffusion limit through evaporation of a micro-liter droplet of DNA on a nanotextured superhydrophobic electrode array.

View Article and Find Full Text PDF

Miniaturized laboratory-on-chip systems promise rapid, sensitive, and multiplexed detection of biological samples for medical diagnostics, drug discovery, and high-throughput screening. Within miniaturized laboratory-on-chips, static and dynamic droplets of fluids in different immiscible media have been used as individual vessels to perform biochemical reactions and confine the products. Approaches to perform localized heating of these individual subnanoliter droplets can allow for new applications that require parallel, time-, and space-multiplex reactions on a single integrated circuit.

View Article and Find Full Text PDF