The impact of siderophore produced by arsenic-resistant bacterium Pseudomonas PG12 on FeAsO4 dissolution and plant growth were examined. Arsenic-hyperaccumulator Pteris vittata was grown for 7 d in 0.2-strength Fe-free Hoagland solution containing FeAsO4 mineral and PG12-siderophore or fungal-siderophore desferrioxamine B (DFOB).
View Article and Find Full Text PDFPhosphorus is an essential nutrient, which is limited in most soils. The P solubilization and growth enhancement ability of seven arsenic-resistant bacteria (ARB), which were isolated from arsenic hyperaccumulator Pteris vittata, was investigated. Siderophore-producing ARB (PG4, 5, 6, 9, 10, 12 and 16) were effective in solubilizing P from inorganic minerals FePO4 and phosphate rock, and organic phytate.
View Article and Find Full Text PDFThe relationship between bacterial ability in arsenic transformation, siderophore production, and P uptake was investigated using six arsenic-resistant bacteria isolated from the rhizosphere of arsenic-hyperaccumulator Pteris vittata. Bacterial strains of PG5 and 12 were better arsenite (AsIII) oxidizers (31-46 vs. 6.
View Article and Find Full Text PDFThe role of arsenic-resistant bacteria (ARB) in arsenic solubilization from growth media and growth enhancement of arsenic-hyperaccumulator Pteris vittata L. was examined. Seven ARB (tolerant to 10 mM arsenate) were isolated from the P.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
August 2008
The role of different functional groups (i.e. amino, carboxyl, hydroxyl as well as phosphate) and cell wall components (such as chitin, chitosan, glucan and phosphomannan) of Rhizopus oryzae on adsorption of rhodamine B is described.
View Article and Find Full Text PDF