Publications by authors named "Piyarat Srisawang"

stem bark extract, particularly the dichloromethane fraction (CGDCM), demonstrated the most potent antiproliferative effects on hepatocellular carcinoma HepG2 and colorectal HCT116 cells. The current study focused on enhancing the effectiveness of cancer treatment with CGDCM at concentrations close to the IC50 in HCT116 cells by reducing their nutrient supply. CGDCM (2, 4, and 8 μg/mL) treatment for 24 h under glucose conditions of 4.

View Article and Find Full Text PDF

The 95% ethanolic extract of the dry powder of () stem bark was separated by fractionation with different solutions to yield 4 fractions: dichloromethane (CGDCM), ethyl acetate (CGEtOAc), and water (CGW). This research focused on CGDCM-induced apoptosis in HepG2 cells with IC50 and above-IC50 values, which provide useful information for future anticancer applications. CGDCM had lower cytotoxicity on normal lung fibroblast IMR-90 cells than on HepG2 cells.

View Article and Find Full Text PDF

Several fractions of Calotropis gigantea extracts have been proposed to have potential anticancer activity in many cancer models. The present study evaluated the anticancer activity of C. gigantea stem bark extracts in liver cancer HepG2 cells and diethylnitrosamine (DEN)-induced primary liver cancer in rats.

View Article and Find Full Text PDF

The de novo lipogenesis (DNL) pathway has been identified as a regulator of cancer progression and aggressiveness. Downregulation of key lipogenesis enzymes has been shown to activate apoptosis in cancerous cells. Epigallocatechin gallate (EGCG) inhibits cancer cell proliferation without causing cytotoxicity in healthy cells.

View Article and Find Full Text PDF

Conventional chemotherapeutic agents for colorectal cancer (CRC) cause systemic side effects and eventually become less efficacious owing to the development of drug resistance in cancer cells. Therefore, new therapeutic regimens have focused on the use of natural products. The anticancer activity of several parts of Calotropis gigantea has been reported; however, the effects of its stem bark extract on inhibition of cancer cell proliferation have not yet been examined.

View Article and Find Full Text PDF

This study investigated the effect of (EM) extract on sexual performance in aged-related erectile dysfunction (ED) rats. The ethanol EM extract at the doses of 15, 150, and 450 and sildenafil citrate at the dose of 5 mg/kg body weight (BW) were administered orally to the aged male rats once daily for 21 days. Mating parameters and intracavernosal pressure (ICP) were measured to evaluate their sexual and erection functions.

View Article and Find Full Text PDF

Suppression of the expression or activities of enzymes that are involved in the synthesis of lipogenesis (DNL) in cancer cells triggers cell death via apoptosis. The plasma membrane citrate transporter (PMCT) is the initial step that translocates citrate from blood circulation into the cytoplasm for long-chain fatty acids synthesis. This study investigated the antitumor effect of the PMCT inhibitor (PMCTi) in inducing apoptosis by inhibiting the DNL pathway in HepG2 cells.

View Article and Find Full Text PDF

Background: Abnormally high expression of the mammalian de novo lipogenesis (DNL) pathway in various cancer cells promotes cell over-proliferation and resistance to apoptosis. Inhibition of key enzymes in the DNL pathway, namely, ATP citrate lyase, acetyl-CoA carboxylase, and fatty acid synthase (FASN) can increase apoptosis without cytotoxicity to non-cancerous cells, leading to the search for and presentation of novel selective and powerful targets for cancer therapy. Previous studies reported that epistructured catechins, epigallocatechin gallate (EGCG) and epicatechin (EC) exhibit different mechanisms regarding a strong inducer of apoptosis in various cancer cell lines.

View Article and Find Full Text PDF

Increased expression levels of both mitochondrial citrate transporter (CTP) and plasma membrane citrate transporter (PMCT) proteins have been found in various cancers. The transported citrates by these two transporter proteins provide acetyl-CoA precursors for the de novo lipogenesis (DNL) pathway to support a high rate of cancer cell viability and development. Inhibition of the DNL pathway promotes cancer cell apoptosis without apparent cytotoxic to normal cells, leading to the representation of selective and powerful targets for cancer therapy.

View Article and Find Full Text PDF

The de novo fatty acid synthesis catalyzed by key lipogenic enzymes, including fatty acid synthase (FASN) has emerged as one of the novel targets of anti-cancer approaches. The present study explored the possible inhibitory efficacy of [6]-gingerol on de novo fatty acid synthesis associated with mitochondrial-dependent apoptotic induction in HepG2 cells. We observed a dissipation of mitochondrial membrane potential accompanied by a reduction of fatty acid levels.

View Article and Find Full Text PDF

The inhibition of the mammalian de novo synthesis of long-chain saturated fatty acids (LCFAs) by blocking the fatty acid synthase (FASN) enzyme activity in tumor cells that overexpress FASN can promote apoptosis, without apparent cytotoxic to non-tumor cells. The present study aimed to focus on the potent inhibitory effect of capsaicin on the fatty acid synthesis pathway inducing apoptosis of capsaicin in HepG2 cells. The use of capsaicin as a source for a new FASN inhibitor will provide new insight into its possible application as a selective anti-cancer therapy.

View Article and Find Full Text PDF

The cellular uptake of the tricarboxylic acid cycle (TCA) intermediates is very important for cellular metabolism. However, the transport pathways for these intermediates in liver cells are not well characterized. We have examined the transport of succinate and citrate in the human hepatoma cell line Hep G2 and found that it exhibited a higher rate of succinate compared to citrate transport, which was sodium dependent.

View Article and Find Full Text PDF