Publications by authors named "Piyali Pal Chowdhury"

Background: Microbes are rich sources of enzymes and esterases are one of the most important classes of enzymes because of their potential for application in the field of food, agriculture, pharmaceuticals and bioremediation. Due to limitations in their cultivation, only a small fraction of the complex microbial communities can be cultured from natural habitats. Thus to explore the catalytic potential of uncultured organisms, the metagenomic approach has turned out to be an effective alternative method for direct mining of enzymes of interest.

View Article and Find Full Text PDF

Unlabelled: Strain ST-14, characterized as a member of the genus Cupriavidus, was capable of utilizing 2- and 4-nitrobenzoates individually as sole sources of carbon and energy. Biochemical studies revealed the assimilation of 2- and 4-nitrobenzoates via 3-hydroxyanthranilate and protocatechuate, respectively. Screening of a genomic fosmid library of strain ST-14 constructed in Escherichia coli identified two gene clusters, onb and pob-pca, to be responsible for the complete degradation of 2-nitrobenzoate and protocatechuate, respectively.

View Article and Find Full Text PDF

Unlabelled: The gene encoding a nonoxidative decarboxylase capable of catalyzing the transformation of 2-hydroxy-1-naphthoic acid (2H1NA) to 2-naphthol was identified, recombinantly expressed, and purified to homogeneity. The putative gene sequence of the decarboxylase (hndA) encodes a 316-amino-acid protein (HndA) with a predicted molecular mass of 34 kDa. HndA exhibited high identity with uncharacterized amidohydrolase 2 proteins of various Burkholderia species, whereas it showed a modest 27% identity with γ-resorcylate decarboxylase, a well-characterized nonoxidative decarboxylase belonging to the amidohydrolase superfamily.

View Article and Find Full Text PDF

Burkholderia sp. strain BC1, a soil bacterium, isolated from a naphthalene balls manufacturing waste disposal site, is capable of utilizing 2-hydroxy-1-naphthoic acid (2H1NA) and naphthalene individually as the sole source of carbon and energy. To deduce the pathway for degradation of 2H1NA, metabolites isolated from resting cell culture were identified by a combination of chromatographic and spectrometric analyses.

View Article and Find Full Text PDF

The present study describes the assimilation of di-n-octyl phthalate by an aerobic bacterium, isolated from municipal waste-contaminated soil sample utilizing di-n-octyl phthalate as the sole source of carbon and energy. The isolate was identified as Gordonia sp. based on the morphological, nutritional and biochemical characteristics as well as 16S rRNA gene sequence analysis.

View Article and Find Full Text PDF