Publications by authors named "Pivneva T"

Xerostomia (dry-mouth syndrome) is a painful and debilitating condition that frequently occurs in individuals with diabetes and is associated with impaired saliva production and salivary gland hypofunction. Saliva fluid production relies on Ca-coupled secretion driven by neurotransmitter stimulation of submandibular acinar cells. Although impairments in intracellular Ca signalling have been reported in various xerostomia models, the specific Ca-dependent mechanisms underlying saliva fluid hypofunction in diabetes remain unclear.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is defined as dysfunction or other evidence of brain pathology caused by external physical force. More than 69 million new cases of TBI are registered worldwide each year, 80% of them - mild TBI. Based on the physical mechanism of induced trauma, we can separate its pathophysiology into primary and secondary injuries.

View Article and Find Full Text PDF

Introduction: The brain myelin and neurons destruction in multiple sclerosis may be associated with the production of neuroinflammatory cells (macrophages, astrocytes, T-lymphocytes) of pro-inflammatory cytokines and free radicals. The age-associated changes of the above cells can influence on the response of nervous system cells to toxic damaging and regulatory factors of humoral/endocrine nature, in particular pineal hormone melatonin. The study aim was (1) to evaluate changes of the brain macrophages, astrocytes, T-cells, neural stem cells, neurons, and central nervous system (CNS) functioning in the neurotoxin cuprizone-treated mice of different age; and (2) to assess in such mice the effects of exogenous melatonin and possible courses of its action.

View Article and Find Full Text PDF

For both stem cell research and treatment of the central nervous system disorders, neural stem/progenitor cells (NSPCs) represent an important breakthrough tool. In the expanded stem cell-based therapy use, NSPCs not only provide a powerful cell source for neural cell replacement but a useful model for developmental biology research. Despite numerous approaches were described for isolation of NSPCs from either fetal or adult brain, the main issue remains in extending cell survival following isolation.

View Article and Find Full Text PDF

In the optic nerve, oligodendrocytes maintain axonal function by supplying lactate as an energy substrate. Here, we report that, in acute brain slices of the mouse corpus callosum, exogenous glucose deprivation (EGD) abolished compound action potentials (CAPs), which neither lactate nor pyruvate could prevent. Loading an oligodendrocyte with 20 mM glucose using a patch pipette prevented EGD-mediated CAP reduction in about 70% of experiments.

View Article and Find Full Text PDF

The hippocampus is the region of the brain that is most susceptible to ischemic lesion because it contains pyramidal neurons that are highly vulnerable to ischemic cell death. A restricted brain neurogenesis limits the possibility of reversing massive cell death after stroke and, hence, endorses cell-based therapies for neuronal replacement strategies following cerebral ischemia. Neurons differentiated from neural stem/progenitor cells (NSPCs) can mature and integrate into host circuitry, improving recovery after stroke.

View Article and Find Full Text PDF

Among all the brain, the hippocampus is the most susceptible region to ischemic lesion, with the highest vulnerability of CA1 pyramidal neurons to ischemic damage. This damage may cause either prompt neuronal death (within hours) or with a delayed appearance (over days), providing a window for applying potential therapies to reduce or prevent ischemic impairments. However, the time course when ischemic damage turns to neuronal death strictly depends on experimental modeling of cerebral ischemia and, up to now, studies were predominantly focused on a short time-window-from hours to up to a few days post-lesion.

View Article and Find Full Text PDF

Microglia are innate immune cells of the brain. We have studied a subpopulation of microglia, called satellite microglia. This cell type is defined by a close morphological soma-to-soma association with a neuron, indicative of a direct functional interaction.

View Article and Find Full Text PDF

The effect of water-soluble form of quercetin on the structural changes of glial cells in hippocampus was investigated in mice after repetitive mild traumatic brain injury. Reactive astro- and microgliosis in hippocampus were observed after brain injury. Iba 1 and GFAP immunohistochemistry was used to visualize astrocytes and microglia cells.

View Article and Find Full Text PDF

The adult CNS has a very limited capacity to regenerate neurons after insult. To overcome this limitation, the transplantation of neural progenitor cells (NPCs) has developed into a key strategy for neuronal replacement. This study assesses the long-term survival, migration, differentiation, and functional outcome of NPCs transplanted into the ischemic murine brain.

View Article and Find Full Text PDF

Central nervous system (CNS) of adult mammalian and, in particular of people, is a typical example of organs that are not restored. However, the growing interest in the development of innovative treatments that are aimed at the regeneration damaged tissue CNS is based on the latest research in the field of stem cells and neurology. The recapitulation of normal neural development has become a vital strategy for CNS regeneration.

View Article and Find Full Text PDF

In this study, we have investigated the contribution of oligodendrocytic connexin47 (Cx47) and astrocytic Cx30 to panglial gap junctional networks as well as myelin maintenance and function by deletion of both connexin coding DNAs in mice. Biocytin injections revealed complete disruption of oligodendrocyte-to-astrocyte coupling in the white matter of 10- to 15-d-old Cx30/Cx47 double-deficient mice, while oligodendrocyte-to-oligodendrocyte coupling was maintained. There were no quantitative differences regarding cellular networks in acute brain slices obtained from Cx30/Cx47 double-null mice and control littermates, probably caused by the upregulation of oligodendrocytic Cx32 in Cx30/Cx47 double-deficient mice.

View Article and Find Full Text PDF

The salivary acinar cells have unique Ca(2+) signaling machinery that ensures an extensive secretion. The agonist-induced secretion is governed by Ca(2+) signals originated from the endoplasmic reticulum (ER) followed by a store-operated Ca(2+) entry (SOCE). During tasting and chewing food a frequency of parasympathetic stimulation increases up to ten fold, entailing cells to adapt its Ca(2+) machinery to promote ER refilling and ensure sustained SOCE by yet unknown mechanism.

View Article and Find Full Text PDF

The calyx of Held (CoH) synapse serves as a model system to analyze basic mechanisms of synaptic transmission. Astrocyte processes are part of the synaptic structure and contact both pre- and postsynaptic membranes. In the medial nucleus of the trapezoid body (MNTB), midline stimulation evoked a current response that was not mediated by glutamate receptors or glutamate uptake, despite the fact that astrocytes express functional receptors and transporters.

View Article and Find Full Text PDF

The migration, integration and differentiation of fetal neural progenitor cells (NPCs) in the ischemic brain have been studied. In our study the ischemic insult in FVB line mice was produced by occlusion of both carotid arteries during 20 min. A day after occlusion NPCs from GFP-transgenic 12.

View Article and Find Full Text PDF

Glial cell processes are part of the synaptic structure and sense spillover of transmitter, while some glial cells can even receive direct synaptic input. Here, we report that a defined type of glial cell in the medial nucleus of the trapezoid body (MNTB) receives excitatory glutamatergic synaptic input from the calyx of Held (CoH). This giant glutamatergic terminal forms an axosomatic synapse with a single principal neuron located in the MNTB.

View Article and Find Full Text PDF

Microglia, one of three types of glial cells in the central nervous system (CNS), plays an important role as resident immunocompetent and phagocytic cells in CNS in the event of injury and disease. It was del Rio Hortego who in 1927 determined that microglia belong a distinct glial cell type apart from astrocytes and oligodendrocytes. Since 1970s there has been wide recognition that microglial cells are immune effectors in the CNS that respond to pathological conditions and participate in initiation and progression of neurological disorders including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and acquired immune deficiency syndrome dementia complex by releasing potentially cytotoxic molecules such as proinflammatory cytokine, reactive oxygen intermediates, proteinases and complement proteins.

View Article and Find Full Text PDF

It is known that long-term diabetes mellitus causes hippocampal dysfunction, however, early events leading to diabetes-related impairments of hippocampal tissue remain obscure. The present study was performed to examine temporal and spatial patterns of neuronal damage and astrogliosis in hippocampal CA1-C3 areas during the early stage of streptozotocin-induced diabetes in rats. NeuN and GFAP immunohistochemistry was used to visualize neurons and glial cells.

View Article and Find Full Text PDF

Ca(2+) signaling is the astrocyte form of excitability and the endoplasmic reticulum (ER) plays an important role as an intracellular Ca(2+) store. Since the subcellular distribution of the ER influences Ca(2+) signaling, we compared the arrangement of ER in astrocytes of hippocampus tissue and astrocytes in cell culture by electron microscopy. While the ER was usually located in close apposition to the plasma membrane in astrocytes in situ, the ER in cultured astrocytes was close to the nuclear membrane.

View Article and Find Full Text PDF

Agonist stimulation of exocrine cells leads to the generation of intracellular Ca(2+) signals driven by inositol 1,4,5-trisphosphate receptors (IP(3)Rs) that rapidly become global due to propagation throughout the cell. In many types of excitable cells the intracellular Ca(2+) signal is propagated by a mechanism of Ca(2+)-induced Ca(2+) release (CICR), mediated by ryanodine receptors (RyRs). Expression of RyRs in salivary gland cells has been demonstrated immunocytochemically although their functional role is not clear.

View Article and Find Full Text PDF

The neuroprotective action by water-soluble form of quercetin was examined in gerbils after transient forebrain ischemia. The animals were exposed to 7 min of bilateral common carotid artery occlusion. Hippocampal CA 1 area was examined 7 days after ischemia-reperfusion.

View Article and Find Full Text PDF

Glial cells increasingly gain importance as part of the brain's communication network. Using transgenic mice expressing green fluorescent protein (EGFP) under the control of the human GFAP promoter, we tested for synaptic input to identified glial cells in the hippocampus. Electron microscopic inspection identified synapse-like structures with EGFP-positive postsynaptic compartments.

View Article and Find Full Text PDF

Several approaches recently introduced to analyze release rates in central synapses advanced our understanding of synaptic neurotransmission, however, leaving many questions still unresolved. In this work we present evidence that a new method recently developed by Sakaba and Neher to study neurotransmission in calyx of Held, a giant glutamatergic synapse, could be also applied for estimating release rate functions and averaged quantal sizes in small central synapses. By means of different simulation approaches applied to reproduce GABAergic neurotransmission in the hippocampus we have shown that possible problems with a spatial voltage clamp which can occur in synaptic connections distributed over a large area of dendritic tree are not crucial for applicability of the method when synapses are compactly distributed or located proximally and when release rates are below 1 ms(-1).

View Article and Find Full Text PDF

Microglia are the resident macrophage population of the CNS and are considered its major immunocompetent elements. They are activated by any type of brain pathology and can migrate to the lesion site. The chemokine CXCL10 is expressed in neurons in response to brain injury and is a signaling candidate for activating microglia and directing them to the lesion site.

View Article and Find Full Text PDF