Publications by authors named "Pius Nde"

New bronchopulmonary dysplasia (BPD) is a neonatal disease that is theorized to begin in utero and manifests as reduced alveolarization due to inflammation of the lung. Risk factors for new BPD in human infants include intrauterine growth restriction (IUGR), premature birth (PTB) and formula feeding. Using a mouse model, our group recently reported that a paternal history of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure increased his offspring's risk of IUGR, PTB, and new BPD.

View Article and Find Full Text PDF

, the etiological agent of Chagas Disease, causes severe morbidity, mortality, and economic burden worldwide. Though originally endemic to Central and South America, globalization has led to increased parasite presence in most industrialized countries. About 40% of infected individuals will develop cardiovascular, neurological, and/or gastrointestinal pathologies.

View Article and Find Full Text PDF

, the etiological agent of Chagas disease, is an intracellular protozoan parasite, which is now present in most industrialized countries. About 40% of infected individuals will develop severe, incurable cardiovascular, gastrointestinal, or neurological disorders. The molecular mechanisms by which induces cardiopathogenesis remain to be determined.

View Article and Find Full Text PDF
Article Synopsis
  • * Research using mouse models showed that a paternal diet rich in fish oil before conception can mitigate negative health outcomes associated with toxicant exposure, such as intrauterine growth issues and preterm birth.
  • * In this study, male mice with a history of toxicant exposure were fed a fish oil diet prior to mating, leading to offspring with reduced risk of NEC, linked to changes in gut bacteria composition.
View Article and Find Full Text PDF

New bronchopulmonary dysplasia is a developmental lung disease associated with placental dysfunction and impaired alveolarization. Risk factors for new BPD include prematurity, delayed postnatal growth, the dysregulation of epithelial-to-mesenchymal transition (EMT), and parental exposure to toxicants. Our group previously reported that a history of paternal toxicant exposure increased the risk of prematurity and low birth weight in offspring.

View Article and Find Full Text PDF

The protozoan parasite, Trypanosoma cruzi, causes severe morbidity and mortality in afflicted individuals. Approximately 30% of T. cruzi infected individuals present with cardiac pathology.

View Article and Find Full Text PDF

Advances in understanding disease pathogenesis correlates to modifications in gene expression within different tissues and organ systems. In depth knowledge about the dysregulation of gene expression profiles is fundamental to fully uncover mechanisms in disease development and changes in host homeostasis. The body of knowledge surrounding mammalian regulatory elements, specifically regulators of chromatin structure, transcriptional and translational activation, has considerably surged within the past decade.

View Article and Find Full Text PDF

dysregulates the gene expression profile of primary human cardiomyocytes (PHCM) during the early phase of infection through a mechanism which remains to be elucidated. The role that small non-coding RNAs (sncRNA) including PIWI-interacting RNA (piRNA) play in regulating gene expression during the early phase of infection is unknown. To understand how dysregulate gene expression in the heart, we challenged PHCM with trypomastigotes and analyzed sncRNA, especially piRNA, by RNA-sequencing.

View Article and Find Full Text PDF

The protozoan parasite is the causative agent of Chagas disease. This neglected tropical disease causes severe morbidity and mortality in endemic regions. About 30% of infected individuals will present with cardiac complications.

View Article and Find Full Text PDF

The protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, causes severe morbidity and mortality in afflicted individuals. About 30% of T. cruzi-infected individuals present with cardiac, gastrointestinal tract, and/or neurological disorders.

View Article and Find Full Text PDF

Background: Previously we reported that a hexon-modified adenovirus (Ad) vector containing the invasive neutralizing epitope of ( trypomastigote gp83 (Ad5-gp83) provided immunoprotection against infection. The purpose of this work was to design an improved vaccine for using a novel epitope capsid incorporation strategy. Thus, we evaluated the immunoprotection raised by co-immunization with Ad5-gp83 and an Ad vector containing an epitope (ASP-M) of the amastigote surface protein 2.

View Article and Find Full Text PDF

The molecular mechanisms of Trypanosoma cruzi induced cardiac fibrosis remains to be elucidated. Primary human cardiomyoctes (PHCM) exposed to invasive T. cruzi trypomastigotes were used for transcriptome profiling and downstream bioinformatic analysis to determine fibrotic-associated genes regulated early during infection process (0 to 120 minutes).

View Article and Find Full Text PDF

Sterol 14α-demethylases (CYP51) are the enzymes essential for sterol biosynthesis. They serve as clinical targets for antifungal azoles and are considered as targets for treatment of human Trypanosomatidae infections. Recently, we have shown that VNI, a potent and selective inhibitor of trypanosomal CYP51 that we identified and structurally characterized in complex with the enzyme, can cure the acute and chronic forms of Chagas disease.

View Article and Find Full Text PDF

Background: Trypanosoma cruzi is the causative agent of Chagas disease. Chagas disease is an endemic infection that affects over 8 million people throughout Latin America and now has become a global challenge. The current pharmacological treatment of patients is unsuccessful in most cases, highly toxic, and no vaccines are available.

View Article and Find Full Text PDF

Human defensins play a fundamental role in the initiation of innate immune responses to some microbial pathogens. Here we show that colonic epithelial model HCT116 cells respond to Trypanosoma cruzi infection by secreting defensin α-1, which reduces infection. We also report the early effects of defensin α-1 on invasive trypomastigotes that involve damage of the flagellar structure to inhibit parasite motility and reduce cellular infection.

View Article and Find Full Text PDF

Chagas disease is a deadly infection caused by the protozoan parasite Trypanosoma cruzi. Afflicting approximately 8 million people in Latin America, Chagas disease is now becoming a serious global health problem proliferating beyond the traditional geographical borders, mainly because of human and vector migration. Because the disease is endemic in low-resource areas, industrial drug development has been lethargic.

View Article and Find Full Text PDF

Chagas disease, which was once thought to be confined to endemic regions of Latin America, has now gone global becoming a new worldwide challenge. For more than a century since its discovery, it has remained neglected with no effective drugs or vaccines. The mechanisms by which Trypanosoma cruzi regulates and uses the extracellular matrix (ECM) to invade cells and cause disease are just beginning to be understood.

View Article and Find Full Text PDF

Trypanosoma cruzi causes Chagas disease, which is a neglected tropical disease that produces severe pathology and mortality. The mechanisms by which the parasite invades cells are not well elucidated. We recently reported that T.

View Article and Find Full Text PDF

Trypanosoma cruzi, the causative agent of Chagas' disease, infects heart and muscle cells leading to cardiac arrest, followed by death. The genetic architectures in the early T. cruzi infection process of human cells are unknown.

View Article and Find Full Text PDF

It has been shown that the invasive trypomastigote forms of Trypanosoma cruzi use and modulate components of the extracellular matrix (ECM) during the initial process of infection. Infective trypomastigotes up-regulate the expression of laminin γ-1 (LAMC1) and thrombospondin (THBS1) to facilitate the recruitment of trypomastigotes to enhance cellular infection. Silencing the expression of LAMC1 and THBS1 by stable RNAi dramatically reduces trypanosome infection.

View Article and Find Full Text PDF

Trypanosoma cruzi, the causative agent of Chagas heart disease, infects heart and other cells leading to cardiac arrest frequently followed by death. The disease affects millions of individuals in the Americas and is posing health problems because of blood transmission in the US due to large Latin American immigration. Since the current drugs present serious side effects and do not cure the chronic infection, it is critically important to understand the early process of cellular infection at the molecular and structural levels to design novel inhibitors to block T.

View Article and Find Full Text PDF

Human defensins play a fundamental role in the initiation of innate immune responses to some microbial pathogens. Here we show that human defensin alpha-1 displays a trypanocidal role against Trypanosoma cruzi, the causative agent of Chagas' disease. The toxicity of human defensin alpha-1 against T.

View Article and Find Full Text PDF

In this work, we report the cloning and characterization of the first cell surface casein kinase II (CKII) substrate (Tc-1) of Trypanosoma cruzi, the causative agent of Chagas' disease. Analysis of the gene sequence revealed a 1,653-bp open reading frame coding for 550 amino acid residues. Northern blot analysis showed a 4.

View Article and Find Full Text PDF

Interactions between Trypanosoma cruzi and the extracellular matrix play an important role in cellular invasion. Here we show that T. cruzi increases the levels of thrombospondin-1 (TSP-1) expression in host cells during early infection.

View Article and Find Full Text PDF

It is thought that Trypanosoma cruzi, the protozoan that causes Chagas' disease, modulates the extracellular matrix network to facilitate infection of human cells. However, direct evidence to document this phenomenon is lacking. Here we show that the T.

View Article and Find Full Text PDF