Publications by authors named "Piul S Rabbani"

Background: A deeper understanding of acute rejection in vascularized composite allotransplantation is paramount for expanding its utility and longevity. There remains a need to develop more precise and accurate tools for diagnosis and prognosis of these allografts, as well as alternatives to traditional immunosuppressive regimens.

Methods: Twenty-seven skin biopsies collected from 3 vascularized composite allotransplantation recipients, consisting of face and hand transplants, were evaluated by histology, immunohistochemistry staining, and gene expression profiling.

View Article and Find Full Text PDF

Hair follicle neogenesis (HFN) occurs after large skin excisions in mice, serving as a rare regenerative model in mammalian wound healing. Wound healing typically results in fibrosis in mice and humans. We previously showed that small skin excisions in mice result in scarring devoid of HFN, displaying features of nonregenerative healing, and hedgehog (Hh) activation in the dermis of such wounds can induce HFN.

View Article and Find Full Text PDF

Objective: Rejection is common and pernicious following Vascularized Composite Allotransplantation (VCA). Current monitoring and diagnostic modalities include the clinical exam which is subjective and biopsy with dermatohistopathologic Banff grading, which is subjective and invasive. We reviewed literature exploring non- and minimally invasive modalities for diagnosing and monitoring rejection (NIMMs) in VCA.

View Article and Find Full Text PDF

Unlabelled: Early surgical exposure and research fellowships can influence medical students' specialty choice, increase academic productivity, and impact residency match. However, to our knowledge, there is no published guidance on the programmatic evaluation and quality enhancement necessary for the sustainability of formal plastic surgery summer research programs for first year medical students. We present seven years (2013-2020) of institutional experience in an effort to inform program development at other institutions.

View Article and Find Full Text PDF

The current standard of care for an alveolar cleft defect is an autogenous bone graft, typically from the iliac crest. Given the limitations of alveolar bone graft surgery, such as limited supply, donor site morbidity, graft failure, and need for secondary surgery, there has been growing interest in regenerative medicine strategies to supplement and replace traditional alveolar bone grafts. Though there have been preliminary clinical studies investigating bone tissue engineering methods in human subjects, lack of consistent results as well as limitations in study design make it difficult to determine the efficacy of these interventions.

View Article and Find Full Text PDF

Skin wounds and disorders compromise the protective functions of skin and patient quality of life. Although accessible on the surface, they are challenging to address due to paucity of effective therapies. Exogenous extracellular vesicles (EVs) and cell-free derivatives of adult multipotent stromal cells (MSCs) are developing as a treatment modality.

View Article and Find Full Text PDF

Background: Cutaneous wounds in patients with diabetes exhibit impaired healing due to physiological impediments and conventional care options are severely limited. Multipotent stromal cells (MSCs) have been touted as a powerful new therapy for diabetic tissue repair owing to their trophic activity and low immunogenicity. However, variations in sources and access are limiting factors for broader adaptation and study of MSC-based therapies.

View Article and Find Full Text PDF

Unlabelled: Chronic venous insufficiency (CVI) stems from venous hypertension, extravasation of blood, and iron-rich skin deposits. The latter is central to ulcer development through generating reactive oxygen species (ROS) that drive persistent local inflammation and the development of lipodermatosclerosis. The ability to study CVI cutaneous inflammation is fundamental to advancing therapies.

View Article and Find Full Text PDF

Unveiling the molecular mechanisms underlying tissue regeneration provides new opportunities to develop treatments for diabetic ulcers and other chronic skin lesions. Here, we show that Ccl2 secretion by epidermal keratinocytes is directly orchestrated by Nrf2, a prominent transcriptional regulator of tissue regeneration that is activated early after cutaneous injury. Through a unique feedback mechanism, we find that Ccl2 from epidermal keratinocytes not only drives chemotaxis of macrophages into the wound but also triggers macrophage expression of EGF, which in turn activates basal epidermal keratinocyte proliferation.

View Article and Find Full Text PDF

Despite promising short- and long-term results to date in vascularized composite allotransplantation (VCA), acute rejection remains the most common major complication in recipients. Currently, diagnosis of acute rejection relies on clinical inspection correlated with histopathological analysis. However, disagreement exists regarding the value of full-thickness skin and mucosal biopsies and histopathology remains semiquantitative, subject to sampling bias, and prone to intra- and inter-observer variabilities.

View Article and Find Full Text PDF

The generation of reactive oxygen species (ROS) is a hallmark of inflammatory processes, but in excess, oxidative stress is widely implicated in various pathologies such as cancer, atherosclerosis and diabetes. We have previously shown that dysfunction of the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/ Kelch-like erythroid cell-derived protein 1 (Keap1) signaling pathway leads to extreme ROS imbalance during cutaneous wound healing in diabetes. Since ROS levels are an important indicator of progression of wound healing, specific and accurate quantification techniques are valuable.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how diabetes affects bone marrow-derived multipotent stromal cells (BMSCs) and their role in wound healing, focusing on the dysregulated Nrf2/Keap1 pathway responsible for managing reactive oxygen species (ROS).
  • Analysis of BMSCs from both wild-type and diabetic mice reveals that the Nrf2 pathway is inefficient in diabetic BMSCs, leading to impaired cell function and metabolic issues.
  • By manipulating this signaling pathway, especially through knocking down Keap1, researchers found it possible to restore the normal function of diabetic BMSCs, which could enhance their ability to support tissue repair and healing in diabetic wounds.
View Article and Find Full Text PDF

Background: Widespread application of vascularized composite allotransplantation (VCA) is currently limited by the required lifelong systemic immunosuppression and its associated morbidity and mortality. This study evaluated the efficacy of ex vivo (after procurement but before transplantation) engineering of allografts using small interfering RNA to knockdown major histocompatibility complex I (MHC-I) and prolong rejection-free survival.

Methods: Endothelial cells (ECs) were transfected with small interfering RNA targeted against MHC-I (siMHC-I) for all in vitro experiments.

View Article and Find Full Text PDF

Aims: Though unmitigated oxidative stress in diabetic chronic non-healing wounds poses a major therapeutic challenge, currently, there are no effective pharmacological agents. We targeted the cytoprotective Nrf2/Keap1 pathway, which is dysfunctional in diabetic skin and the regenerative environment in the diabetic wound. We assessed the efficacy of a potent Nrf2-activator, RTA 408, a semi-synthetic oleanane triterpenoid, on accelerating diabetic wound healing.

View Article and Find Full Text PDF

Current pharmacologic regimens in transplantation prevent allograft rejection through systemic recipient immunosuppression but are associated with severe morbidity and mortality. The ultimate goal of transplantation is the prevention of allograft rejection while maintaining recipient immunocompetence. We hypothesized that allografts could be engineered ex vivo (after allotransplant procurement but before transplantation) by using mesenchymal stem cell-based therapy to generate localized immunomodulation without affecting systemic recipient immunocompetence.

View Article and Find Full Text PDF

Despite improvements in awareness and treatment of type II diabetes mellitus (TIIDM), this disease remains a major source of morbidity and mortality worldwide, and prevalence continues to rise. Oxidative damage caused by free radicals has long been known to contribute to the pathogenesis and progression of TIIDM and its complications. Only recently, however, has the role of the Nrf2/Keap1/ARE master antioxidant pathway in diabetic dysfunction begun to be elucidated.

View Article and Find Full Text PDF

Therapeutics utilizing siRNA are currently limited by the availability of safe and effective delivery systems. Cutaneous diseases, specifically ones with significant genetic components are ideal candidates for topical siRNA based therapy but the anatomical structure of skin presents a considerable hurdle. Here, we optimized a novel liposome and protein hybrid nanoparticle delivery system for the topical treatment of diabetic wounds with severe oxidative stress.

View Article and Find Full Text PDF

Chronic hyperglycemia impairs intracellular redox homeostasis and contributes to impaired diabetic tissue regeneration. The Keap1/Nrf2 pathway is a critical regulator of the endogenous antioxidant response system, and its dysfunction has been implicated in numerous pathologies. Here we characterize the effect of chronic hyperglycemia on Nrf2 signaling within a diabetic cutaneous regeneration model.

View Article and Find Full Text PDF

Background: Fat grafting is limited by unpredictable long-term graft retention. The authors postulate that injury to the donor-derived microvasculature during harvest and subsequent ischemia may account for this clinical variability. They examined the use of the U.

View Article and Find Full Text PDF