Publications by authors named "Pitts Teresa"

Effects of sequential increase in airway resistance: no, low (5 kPa.s/l), high (24 kPa.s/l), and complete block in the inspiratory or expiratory phase of mechanically induced cough on the cough motor pattern were studied in 16 anesthetized (pentobarbital) spontaneously breathing cats (3.

View Article and Find Full Text PDF

Introduction: Aspiration pneumonia, a leading cause of mortality, poses an urgent challenge in contemporary society. Neuromuscular electrical stimulation (NMES) has been commonly used in dysphagia rehabilitation. However, given that NMES at motor threshold targets only specific muscles, it carries a potential risk of further compromising functions related to swallowing, respiration, and airway protection.

View Article and Find Full Text PDF

Systemic administration of opioids has been associated with aspiration and swallow dysfunction in humans. We speculated that systemic administration of codeine would induce dysfunctional swallowing and that this effect would have a peripheral component. Experiments were conducted in spontaneously breathing, anesthetized cats.

View Article and Find Full Text PDF

Purpose: Postoperative pneumonia remains a common complication of surgery, despite increased attention. The purpose of our study was to determine the effects of routine surgery and post-surgical opioid administration on airway protection risk.

Methods: Eight healthy adult cats were evaluated to determine changes in airway protection status and for evidence of dysphagia in two experiments.

View Article and Find Full Text PDF

Opioids are well-known to cause respiratory depression, but despite clinical evidence of dysphagia, the effects of opioids on swallow excitability and motor pattern are unknown. We tested the effects of the clinically relevant opioid buprenorphine on pharyngeal swallow and respiratory drive in male and female rats. We also evaluated the utility of 5-HT agonists (8-OH-DPAT and buspirone) to improve swallowing and breathing following buprenorphine administration.

View Article and Find Full Text PDF

An anesthetized cat animal model was used to evaluate changes in cough and swallow after a small midline upper abdominal incision (laparotomy). Two additional conditions were tested: sealing the laparotomy with gentle suctioning via a small cannula, and subsequent closure of the abdominal wall with suture. These abdominal wall manipulations resulted in no changes in the cough reflex, but produced higher motor drive to pharyngeal musculature (thyropharyngeus and geniohyoid muscles) during swallow.

View Article and Find Full Text PDF

Opioids are well-known to cause respiratory depression, but despite clinical evidence of dysphagia, the effects of opioids on swallow excitability and motor pattern are unknown. We sought to test the effects of the clinically-relevant opioid buprenorphine on pharyngeal swallow and respiratory drive in male and female rats. We also evaluated utility of serotonin 5-HT1A agonists (8-OH-DPAT and buspirone) to improve swallowing and breathing outcomes following buprenorphine administration.

View Article and Find Full Text PDF

Introduction: Pompe disease is an inherited disease characterized by a deficit in acid-α-glucosidase (GAA), an enzyme which degrades lysosomal glycogen. The phrenic-diaphragm motor system is affected preferentially, and respiratory failure often occurs despite GAA enzyme replacement therapy. We hypothesized that the continued use of diaphragm pacing (DP) might improve ventilator-dependent subjects' respiratory outcomes and increase ventilator-free time tolerance.

View Article and Find Full Text PDF

Breathing is a singularly robust behavior, yet this motor pattern is continuously modulated at slow and fast timescales to maintain blood-gas homeostasis, while intercalating orofacial behaviors. This functional multiplexing goes beyond the rhythmogenic function that is typically ascribed to medullary respiration-modulated networks and may explain lack of progress in identifying the mechanism and constituents of the respiratory rhythm generator. By recording optically along the ventral respiratory column in medulla, we found convergent evidence that rhythmogenic function is distributed over a dispersed and heterogeneous network that is synchronized by electrotonic coupling across a neuronal syncytium.

View Article and Find Full Text PDF

Effective cough requires a significant increase in lung volume used to produce the shear forces on the airway to clear aspirated material. This increase in tidal volume during cough, along with an increase in tidal frequency during bouts of paroxysmal cough produces profound hyperventilation and thus reduces arterial CO. While there are several reports in the literature regarding the effects of hypercapnia, hyperoxia, and hypoxia on cough, there is little research quantifying the effects of hypocapnia on the cough reflex.

View Article and Find Full Text PDF

Despite centuries of investigation, questions and controversies remain regarding the fundamental genesis and motor pattern of swallow. Two significant topics include inspiratory muscle activity during swallow (Schluckatmung, i.e.

View Article and Find Full Text PDF

The coordination of swallowing with breathing, in particular inspiration, is essential for homeostasis in most organisms. While much has been learned about the neuronal network critical for inspiration in mammals, the pre-Bötzinger complex (preBötC), little is known about how this network interacts with swallowing. Here we activate within the preBötC excitatory neurons (defined as and neurons) and inhibitory neurons (defined as neurons) and inhibit and activate neurons defined by the transcription factor to gain an understanding of the coordination between the preBötC and swallow behavior.

View Article and Find Full Text PDF

Laryngeal function is vital to airway protection. Although swallow is mediated by the brainstem, the mechanism underlying the increased risk of dysphagia after cervical spinal cord injury (SCI) is unknown. We hypothesized that: ) loss of descending phrenic drive affects swallow and breathing differently, and ) loss of ascending spinal afferent information alters swallow regulation.

View Article and Find Full Text PDF

Background: X-linked myotubular myopathy (XLMTM) is a life-threatening congenital myopathy that, in most cases, is characterized by profound muscle weakness, respiratory failure, need for mechanical ventilation and gastrostomy feeding, and early death.

Objective: We aimed to characterize the neuromuscular, respiratory, and extramuscular burden of XLMTM in a prospective, longitudinal study.

Methods: Thirty-four participants < 4 years old with XLMTM and receiving ventilator support enrolled in INCEPTUS, a prospective, multicenter, non-interventional study.

View Article and Find Full Text PDF

We employed computational modeling to investigate previously conducted experiments of the effect of vagal afferent modulation on the cough reflex in an anesthetized cat animal model. Specifically, we simulated unilateral cooling of the vagus nerve and analyzed characteristics of coughs produced by a computational model of brainstem cough/respiratory neuronal network. Unilateral vagal cooling was simulated by a reduction of cough afferent input (corresponding to unilateral vagal cooling) to the cough network.

View Article and Find Full Text PDF

Brainstem respiratory neuronal network significantly contributes to cough motor pattern generation. Neuronal populations in the pre-Bötzinger complex (PreBötC) represent a substantial component for respiratory rhythmogenesis. We studied the role of PreBötC neuronal excitation and inhibition on mechanically induced tracheobronchial cough in 15 spontaneously breathing, pentobarbital anesthetized adult cats (35 mg/kg, iv initially).

View Article and Find Full Text PDF

The role of the cerebellum in controlling the cough motor pattern is not well understood. We hypothesized that cerebellectomy would disinhibit motor drive to respiratory muscles during cough. Cough was induced by mechanical stimulation of the tracheobronchial airways in anesthetized, spontaneously breathing adult cats (8 male, 1 female), and electromyograms (EMGs) were recorded from upper airway, chest wall, and abdominal respiratory muscles.

View Article and Find Full Text PDF

Swallow is a complex behavior that consists of three coordinated phases: oral, pharyngeal, and esophageal. Esophageal distension (EDist) has been shown to elicit pharyngeal swallow, but the physiologic characteristics of EDist-induced pharyngeal swallow have not been specifically described. We examined the effect of rapid EDist on oropharyngeal swallow, with and without an oral water stimulus, in spontaneously breathing, sodium pentobarbital anesthetized cats (n = 5).

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a lifelong neurodevelopmental disorder that consists of difficulties with social communication and language, as well as the presence of restricted and repetitive behaviors. These deficits tend to present in early childhood and usually lead to impairments in functioning across various settings. Moreover, these deficits have been shown to negatively impact adaptive behavior and functioning.

View Article and Find Full Text PDF

Swallow is a primitive behavior regulated by medullary networks, responsible for movement of food/liquid from the oral cavity to the esophagus. To investigate how functionally heterogeneous networks along the medullary intermediate reticular formation (IRt) and ventral respiratory column (VRC) control swallow, we electrically stimulated the nucleus tractus solitarius to induce fictive swallow between inspiratory bursts, with concurrent optical recordings using a synthetic Ca indicator in the neonatal sagittally sectioned rat hindbrain (SSRH) preparation. Simultaneous recordings from hypoglossal nerve rootlet (XIIn) and ventral cervical spinal root C1-C2 enabled identification of the system-level correlates of ) swallow (identified as activation of the XIIn but not the cervical root) and ) Breuer-Hering expiratory reflex (BHE; lengthened expiration in response to stimuli during expiration).

View Article and Find Full Text PDF

The study investigates the effects of 6 occlusion conditions on the mechanically induced cough reflex in 15 anesthetized (pentobarbital) spontaneously breathing cats (14♂, 1♀). Esophageal pressure and integrated EMG activities of inspiratory (I) diaphragm and expiratory (E) abdominal muscles were recorded and analyzed. Occlusions: inspiratory (Io), continual I (cIo), during I and active E (I+Eo) cough phase, during I and then E phase with short releasing of airflow before each phase (I-Eo), and E occlusion (Eo) had little influence on cough number.

View Article and Find Full Text PDF

Lung volume is modulated by sensory afferent feedback via vagal and spinal pathways. The purpose of this study was to systematically alter afferent feedback with and without a mechanical challenge (chest compression). We hypothesized that manipulation of afferent feedback by nebulization of lidocaine, extra-thoracic vagotomy, or lidocaine administration to the pleural space would produce differential effects on the motor pattern of breathing during chest compression in sodium pentobarbital anesthetized rats (N = 43).

View Article and Find Full Text PDF

Swallow-breathing coordination is influenced by changes in lung volume, which is modulated by feedback from both vagal and spinal sensory afferents. The purpose of this study was to manipulate feedback from these afferents, with and without a simultaneous mechanical challenge (chest compression), in order to assess the influence of each sensory pathway on swallow in rats. We hypothesized that manipulation of afferent feedback would shift the occurrence of swallow toward the inspiratory phase of breathing.

View Article and Find Full Text PDF