This work focused on sex differences in rats exposed to sarin. Females were found to be more sensitive to sarin toxicity (LD50 67 μg/kg) than males (88 μg/kg), showed less acute hypothermic effects than males (at 120 min post sarin, 3.1 ± 1.
View Article and Find Full Text PDFThe effect of sarin on the binding parameters (KD & Bmax) of M2 muscarinic acetylcholine receptor (mAChR) was studied 24h and 1 week post exposure. Male & female Sprague-Daweley rats were poisoned with 1XLD50 sarin (80μg/kg, im) followed by treatment of trimedoxime bromide and atropine (7.5:5mg/kg, im) 1min later.
View Article and Find Full Text PDFMaternal care is the newborn's first experience of social interaction, and this influences infant survival, development and social competences throughout life. We recently found that postpartum blocking of the endocannabinoid receptor-1 (CB1R) altered maternal behaviour. In the present study, maternal care was assessed by the time taken to retrieve pups, pups' ultrasonic vocalisations (USVs) and pup body weight, comparing CB1R deleted (CB1R KO) versus wild-type (WT) mice.
View Article and Find Full Text PDFActivity-dependent neuroprotective protein (ADNP) differentially interacts with chromatin to regulate essential genes. Because complete ADNP deficiency is embryonic lethal, the outcome of partial ADNP deficiency was examined. ADNP(+/-) mice exhibited cognitive deficits, significant increases in phosphorylated tau, tangle-like structures, and neurodegeneration compared with ADNP(+/+) mice.
View Article and Find Full Text PDFCertain organophosphate (OP) cholinesterase inhibitors (ChEIs) are also known to bind to the muscarinic acetylcholine receptor (mAChR). The functional consequences of such binding were investigated here using the following OP compounds: VX, echothiophate, sarin, and soman. VX (charged at physiological pH) and echothiophate (formally charged) inhibited a specific signal transduction pathway in CHO cells expressing either the M(1) or M(3) mAChR.
View Article and Find Full Text PDFM1 muscarinic receptors (M1 mAChRs) play a role in an apparent linkage of three major hallmarks of Alzheimer's disease (AD): beta-amyloid (Abeta) peptide; tau hyperphosphorylation and paired helical filaments (PHFs); and loss of cholinergic function conducive to cognitive impairments. We evaluated the M1 muscarinic agonists AF102B (Cevimeline, EVOXAC trade mark : prescribed for Sjøgren's syndrome), AF150(S), and AF267B on some of these hallmarks of AD. Activation of M1 mAChRs with these agonists leads, inter alia, to enhanced secretion of amyloid precursor protein (alpha-APP), (via alpha-secretase activation), to decreased Abeta (via gamma-secretase inhibition), and to inhibition of Abeta- and/or oxidative stress-induced cell death.
View Article and Find Full Text PDFBrain Res Dev Brain Res
August 2003
We have recently cloned the novel homeobox-containing activity-dependent neuroprotective protein (ADNP). In the current study, mouse ADNP was shown to be expressed at the time of neural tube closure, detected at E7.5 and increased on E9.
View Article and Find Full Text PDFJ Neural Transm Suppl
January 2003
The M1 muscarinic agonists AF102B, AF150(S) & AF267B--i) restored cognitive impairments in several animal models for AD with an excellent safety margin; ii) elevated alpha-APPs levels; iii) attenuated vicious cycles induced by A beta, and inhibited A beta- and oxidative stress-induced apoptosis; and iv) decreased tau hyperphosphorylation. AF150(S) and AF267B were more effectve than rivastigmine and nicotine in restoring memory impairments in mice with small hippocampi. In apolipoprotein E-knockout mice, AF150(S) restored cognitive impairments and cholinergic hypofunction and decreased tau hyperphosphorylation.
View Article and Find Full Text PDFThe M1 muscarinic agonists AF102B (Cevimeline, EVOXACTM: prescribed in USA and Japan for Sjogren's Syndrome), AF150(S) and AF267B--1) are neurotrophic and synergistic with neurotrophins such as nerve growth factor and epidermal growth factor; 2) elevate the non-amyloidogenic amyloid precursor protein (alpha-APPs) in vitro and decrease beta-amyloid (A beta) levels in vitro and in vivo; and 3) inhibit A beta- and oxidative-stress-induced cell death and apoptosis in PC12 cells transfected with the M1 muscarinic receptor. These effects can be combined with the beneficial effects of these compounds on some other major hallmarks of Alzheimer's disease (AD) (e.g.
View Article and Find Full Text PDFA cholinergic hypofunction in Alzheimer's disease (AD) may lead to formation of beta-amyloids that might impair the coupling of M1 muscarinic ACh receptors (mAChRs) with G proteins. This disruption in coupling can lead to decreased signal transduction, to a reduction in levels of trophic amyloid precursor proteins (APPs), and to generation of more beta-amyloids that can also suppress ACh synthesis and release, aggravating further the cholinergic deficiency. These "vicious cycles," a presynaptic and a postsynaptic one, may be inhibited, in principle, by M1 selective agonists.
View Article and Find Full Text PDFFull and functionally selective M1 muscarinic agonists (carbachol and AF102B, respectively) activate secretion of the soluble form of amyloid precursor protein (APPs) in PC12 cells expressing the m1 muscarinic receptor (PC12M1 cells). This activation is further augmented by neurotrophins such as nerve growth factor and basic fibroblast growth factor. Muscarinic stimulation activates two transduction pathways that lead to APPs secretion: protein kinase C (PKC)-dependent and mitogen-activated protein kinase (MAPK)-dependent pathways.
View Article and Find Full Text PDFM1 selective agonists from the AF series (e.g. AF102B, AF150(S)), via m1 muscarinic receptors, activate distinct signal transductions, enhance amyloid precursors proteins secretion from transfected cells and primary cell cultures, show neurotrophic effects and are beneficial in a variety of animal models for Alzheimer's disease.
View Article and Find Full Text PDFRecent studies suggest that apolipoprotein E (apoE) plays a specific role in brain cholinergic function and that the E4 allele of apoE (apoE4), a major risk factor for Alzheimer's disease (AD), may predict the extent of cholinergic dysfunction and the efficacy of cholinergic therapy in this disease. Animal model studies relevant to this hypothesis revealed that apoE-deficient (knockout) mice have working memory impairments that are associated with distinct dysfunction of basal forebrain cholinergic neurons. Cholinergic replacement therapy utilizing M1-selective muscarinic agonists has been proposed as effective treatment for AD patients.
View Article and Find Full Text PDFJ Biochem Biophys Methods
March 1997
Butyrylcholinesterase from human plasma (HuBChE) is a potential drug candidate for detoxification of certain harmful chemicals that contain carboxylic or phosphoric acid ester bonds. Large quantities of purified HuBChE, displaying a high stability upon long-term storage, are required for the evaluation of its therapeutic capacity and its pharmaceutical properties. Several modifications of a previously reported procedure enabled us to purify the enzyme > 15,000-fold from pools of up to 100 1 of human plasma.
View Article and Find Full Text PDFIt was previously shown by us and by others that activation of muscarinic acetylcholine receptors evoke amyloid precursor protein (APP) secretion in various cell lines. Here we examined if such muscarinic control of APP secretion occurs also in normal brain tissues. We found that the secretion of APP from rat cerebrocortical slices (rich in M1 receptors) was significantly increased by K+ depolarization, the non-selective agonist, carbachol (CCh), and the M1-selective agonist, AF102B.
View Article and Find Full Text PDFMuscarinic receptor agonists activate phosphoinositide hydrolysis and adenylate cyclase in Chinese hamster ovary cells transfected with cDNAs encoding the human muscarinic ml and m3 receptors. Whereas carbachol activates similarly both receptor subtypes, 4-[3-chlorophenyl-carbamoyloxy]-2-butynyltrimethyl ammonium chloride (McN-A-343) preferentially activates the m1 subtype over m3, in regard to both phosphoinositide hydrolysis and adenylate cyclase activity. On the other hand, oxotremorine activates phosphoinositide hydrolysis to a similar extent in both cell lines, but it activates preferentially adenylate cyclase in m1 versus m3 receptor expressing cells.
View Article and Find Full Text PDFDehydroepiandrosterone (DHEA), the major secretory product of the human adrenal cortex, significantly declines with advanced age. We have previously demonstrated that DHEA prevents the reduction in non-amyloidogenic APP processing, following prolonged stimulation of the muscarinic receptor, in PC12 cells that express the ml acetylcholine-receptor. The present study examined whether this effect may be mediated via modulation of APP metabolism.
View Article and Find Full Text PDFEpidemiologic studies suggest that the age-related decline in dehydroepiandrosterone (DHEA) levels may be associated with Alzheimer's disease (AD). Cholinergic markers also decline with age, and are associated with AD pathology. Activation of m1AChR-transfected PC12 cells (PC12M1) with cholinergic agonists results in secretion of Alzheimer's beta-amyloid precursor protein (APP) which in turn reduces beta-amyloid production.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 1995
Processing of beta-amyloid precursor protein (APP) is coupled to several neurotransmitter receptors, including m1 muscarinic (m1AChR), and is associated with decreased amyloid deposition. Muscarinic agonist-stimulated APP secretion and membrane APP were measured in control and in NGF-differentiated PC12 cells stably transfected with m1AChR. This secretion was markedly enhanced following treatment with 50 ng/ml NGF for 3 days, and was observed using either carbachol or the M1-selective agonist AF102B.
View Article and Find Full Text PDFSecretion of amyloid precursor protein (APP) by cultured cells is coupled to several receptors, including m1 muscarinic (m1AChR), and is associated with decreased production of beta A4 amyloid. Secreted and cell-associated APP levels were measured in m1AChR-transfected PC12 cells stimulated with the non-selective agonist carbachol or the M1-selective agonist, AF102B. Secreted APP levels following stimulation with AF102B (5-60 min) were about half compared with carbachol.
View Article and Find Full Text PDFCurrent models of the three-dimensional structures of muscarinic acetylcholine receptors and other G protein-coupled receptors are based primarily on high-resolution electron diffraction data obtained with bacteriorhodopsin, the molecular structure of which is characterized by the presence of seven alpha-helical transmembrane domains (TM I-VII). However, bacteriorhodopsin does not couple to G proteins and its primary sequence lacks a series of amino acids that are conserved among virtually all G protein-coupled receptors. Therefore, it remains to be shown experimentally whether the molecular structures of these functionally different proteins are in fact identical.
View Article and Find Full Text PDFRigid analogs of acetylcholine (ACh) were designed for selective actions at muscarinic receptor (mAChR) subtypes and distinct second messenger systems. AF102B, AF150, and AF151 are such rigid analogs of ACh. AF102B, AF150 and AF151 are centrally active M1 agonists.
View Article and Find Full Text PDFRigid analogs of acetylcholine (ACh) were designed for selective actions at muscarinic receptor subtypes. AF102B, AF125, AF150 and AF151 are such rigid analogs of ACh. Whilst AF125 is an M2 > M1 agonist, AF102B, AF150 and AF151 are centrally active M1 agonists.
View Article and Find Full Text PDFThe activities of various presynaptic cholinergic parameters were determined in hippocampal synaptosomes of rats 29 weeks after intracerebroventricular injection of ethylcholine aziridinium (AF64A) (3 nmol/2 microliters/side) or vehicle (saline). Synaptosomes were preloaded with [3H]choline ([3H]Ch), treated with diisopropyl fluorophosphate to inhibit cholinesterase activity and then were assayed for their content of [3H]Ch and [3H]acetylcholine ([3H]ACh) and for their ability to synthesize and release [3H]ACh. In synaptosomes from AF64A-treated rats compared with synaptosomes from vehicle-treated rats we observed that: (i) specific uptake of [3H]Ch was reduced to 60% of control; (ii) residing [3H]ACh levels were 43% of control while residing [3H]Ch levels were 72% of control; (iii) basal and K(+)-induced [3H]ACh release were 77% and 73% of control, respectively; (iv) high K(+)-induced synthesis of [3H]ACh was only 9% of control; (v) but, choline acetyltransferase activity remained relatively high, being 80% of control.
View Article and Find Full Text PDF