Age increases the risk for cognitive impairment and is the single major risk factor for Alzheimer's disease (AD), the most prevalent form of dementia in the elderly. The pathophysiological processes triggered by aging that render the brain vulnerable to dementia involve, at least in part, changes in inflammatory mediators. Here we show that lipoxin A4 (LXA4), a lipid mediator of inflammation resolution known to stimulate endocannabinoid signaling in the brain, is reduced in the aging central nervous system.
View Article and Find Full Text PDFOver the past years, brain development has been investigated in rodent models, which were particularly relevant to establish the role of specific genes in this process. However, the cytoarchitectonic features, which determine neuronal network formation complexity, are unique to humans. This implies that the developmental program of the human brain and neurological disorders can only partly be reproduced in rodents.
View Article and Find Full Text PDFMitochondrial dysfunction is a central component in the pathophysiology of multiple neuropsychiatric and degenerative disorders. Evaluating mitochondrial function in human-derived neural cells can help characterize dysregulation in oxidative metabolism associated with the onset of brain disorders, and may also help define targeted therapies. Astrocytes play a number of different key roles in the brain, being implicated in neurogenesis, synaptogenesis, blood-brain-barrier permeability, and homeostasis, and, consequently, the malfunctioning of astrocytes is related to many neuropathologies.
View Article and Find Full Text PDFThe northeast (NE) region of Brazil commonly goes through drought periods, which favor cyanobacterial blooms, capable of producing neurotoxins with implications for human and animal health. The most severe dry spell in the history of Brazil occurred between 2012 and 2016. Coincidently, the highest incidence of microcephaly associated with the Zika virus (ZIKV) outbreak took place in the NE region of Brazil during the same years.
View Article and Find Full Text PDFAstrogliosis comprises a variety of changes in astrocytes that occur in a context-specific manner, triggered by temporally diverse signaling events that vary with the nature and severity of brain insults. However, most mechanisms underlying astrogliosis were described using animals, which fail to reproduce some aspects of human astroglial signaling. Here, we report an in vitro model to study astrogliosis using human-induced pluripotent stem cells (iPSC)-derived astrocytes which replicate temporally intertwined aspects of reactive astrocytes in vivo.
View Article and Find Full Text PDFIn cancer research, the use of established cell lines has gradually been replaced by primary cell cultures due to their better representation of cancer cell behaviors. However, a major challenge with primary culture involves the finding of growth conditions that minimize alterations in the biological state of the cells. To ensure reproducibility and translational potentials for research findings, culture conditions need to be chosen so that the cell population in culture best mimics tumor cells .
View Article and Find Full Text PDFBackground Aims: The purpose of this study was to investigate whether the secretome of human adipose-derived stem cells (hADSC) affects human glioblastoma (GBM) cancer stem cell (CSC) subpopulation or has any influence on drug resistance and cell migration, evaluating the safety of hADSCs for novel cancer therapies.
Methods: hADSCs were maintained in contact with fresh culture medium to produce hADSCs conditioned medium (CM). GBM U87 cells were cultured with CM and sphere formation, expression of genes related to resistance and CSCs-MGMT, OCT4, SOX2, NOTCH1, MSI1-and protein expression of OCT4 and Nanog were analyzed.
Background: Cell culture plays a pivotal role in cancer research. However, culture-induced changes in biological properties of tumor cells profoundly affect research reproducibility and translational potential. Establishing culture conditions tailored to the cancer cell of origin could resolve this problem.
View Article and Find Full Text PDFBackground: Temozolomide (TMZ) is the most widely used drug to treat glioblastoma (GBM), which is the most common and aggressive primary tumor of the Central Nervous System and one of the hardest challenges in oncotherapy. TMZ is an alkylating agent that induces autophagy, apoptosis and senescence in GBM cells. However, therapy with TMZ increases survival after diagnosis only from 12 to 14.
View Article and Find Full Text PDFGlioblastoma is the most aggressive tumor in the CNS and is characterized by having a cancer stem cell (CSC) subpopulation essential for tumor survival. The purinergic system plays an important role in glioma growth, since adenosine triphosphate (ATP) can induce proliferation of glioma cells, and alteration in extracellular ATP degradation by the use of exogenous nucleotidases dramatically alters the size of gliomas in rats. The aim of this work was to characterize the effect of the purinergic system on glioma CSCs.
View Article and Find Full Text PDFNever in mitosis A (NIMA)-related kinases (Nek) are evolutionarily conserved proteins structurally related to the Aspergillus nidulans mitotic regulator NIMA. Nek1 is one of the 11 isoforms of the Neks identified in mammals. Different lines of evidence suggest the participation of Nek1 in response to DNA damage, which is also supported by the interaction of this kinase with proteins involved in DNA repair pathways and cell cycle regulation.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
December 2009
There is now compelling evidence that brain tumors harbor a small population of cells characterized by their ability to undergo self-renewal and initiate tumors, termed cancer stem cells (CSCs). The development of therapeutic strategies targeted towards CSC signaling may improve the treatment of brain tumors such as malignant gliomas and medulloblastomas. Here we review the role of cancer stem cells in glioma and medulloblastoma and some of the signaling mechanisms involved in brain tumor stem cell (BTSC) biology, and discuss how these signaling pathways may represent new stem cell targets for the treatment of brain tumors.
View Article and Find Full Text PDF