Publications by authors named "Pit Bingen"

The calyx of Held, a large glutamatergic terminal in the mammalian auditory brainstem has been extensively employed to study presynaptic structure and function in the central nervous system. Nevertheless, the nanoarchitecture of presynaptic proteins and subcellular components in the calyx terminal and its relation to functional properties of synaptic transmission is only poorly understood. Here, we use stimulated emission depletion (STED) nanoscopy of calyces in thin sections of aldehyde-fixed rat brain tissue to visualize immuno-labeled synaptic proteins including VGluT1, synaptophysin, Rab3A and synapsin with a lateral resolution of approximately 40 nm.

View Article and Find Full Text PDF

Human immunodeficiency virus type 1 (HIV-1) buds from the cell as an immature particle requiring subsequent proteolysis of the main structural polyprotein Gag for morphological maturation and infectivity. Visualization of the viral envelope (Env) glycoprotein distribution on the surface of individual HIV-1 particles with stimulated emission depletion (STED) superresolution fluorescence microscopy revealed maturation-induced clustering of Env proteins that depended on the Gag-interacting Env tail. Correlation of Env surface clustering with the viral entry efficiency revealed coupling between the viral interior and exterior: Rearrangements of the inner protein lattice facilitated the alteration of the virus surface in preparation for productive entry.

View Article and Find Full Text PDF

We introduce a parallelized STED microscope featuring m = 4 pairs of scanning excitation and STED beams, providing m-fold increased imaging speed of a given sample area, while maintaining basically all of the advantages of single beam scanning. Requiring only a single laser source and fiber input, the setup is inherently aligned both spatially and temporally. Given enough laser power, the design is readily scalable to higher degrees of parallelization m.

View Article and Find Full Text PDF

Quartz crystal microbalance with dissipation monitoring (QCM-D) has become a popular tool to investigate biomolecular adsorption phenomena at surfaces. In contrast to optical mass-sensitive techniques, which commonly detect the adsorbed nonhydrated mass, the mechanically coupled mass measured by QCM-D includes a significant amount of water. A mechanistic and quantitative picture of how the surrounding liquid couples to the deposited solutes has so far been elusive for apparently simple phenomena like the random adsorption of nanometer-sized particles on a planar surface.

View Article and Find Full Text PDF