Polyubiquitinated proteins are primarily degraded by the ubiquitin-proteasome system (UPS). Proteasomes are present both in the cytoplasm and nucleus. Here, we investigated mechanisms coordinating proteasome subcellular localization and activity in a multicellular organism.
View Article and Find Full Text PDFVariation in ambient growth temperature can cause changes in normal animal physiology and cellular functions such as control of protein homeostasis. A key mechanism for maintaining proteostasis is the selective degradation of polyubiquitinated proteins, mediated by the ubiquitin-proteasome system (UPS). It is still largely unsolved how temperature changes affect the UPS at the organismal level.
View Article and Find Full Text PDFMesenchymal condensation is a critical step in organogenesis, yet the underlying molecular and cellular mechanisms remain poorly understood. The hair follicle dermal condensate is the precursor to the permanent mesenchymal unit of the hair follicle, the dermal papilla, which regulates hair cycling throughout life and bears hair inductive potential. Dermal condensate morphogenesis depends on epithelial Fibroblast Growth Factor 20 (Fgf20).
View Article and Find Full Text PDFAim: We studied whether available oxygen without induced mechanical stretch regulates the release of the biologically active B-type natriuretic peptide (BNP) from Langendorff heart.
Methods: Rat hearts were isolated and perfused with a physiological Krebs-Henseleit solution at a constant hydrostatic pressure in Langendorff set-up. The basal O level of perfusate (24.
The development of ectodermal organs requires signalling by ectodysplasin (Eda), a tumor necrosis factor (TNF) family member, its receptor Edar and downstream activation of the nuclear factor kappaB (NF-kappaB) transcription factor. In humans, mutations in the Eda pathway components cause hypohidrotic ectodermal dysplasia, a syndrome characterized by missing teeth, sparse hair and defects in sweat glands. It has been postulated that Eda acts redundantly with another TNF pathway to regulate ectodermal organogenesis.
View Article and Find Full Text PDFBackground: Dss1 (or Rpn15) is a recently identified subunit of the 26S proteasome regulatory particle. In addition to its function in the protein degradation machinery, it has been linked to BRCA2 (breast cancer susceptibility gene 2 product) and homologous DNA recombination, mRNA export, and exocytosis. While the fungal orthologues of Dss1 are not essential for viability, the significance of Dss1 in metazoans has remained unknown due to a lack of knockout animal models.
View Article and Find Full Text PDFThe single copy Drosophila alpha-actinin gene is alternatively spliced to generate three different isoforms that are expressed in larval muscle, adult muscle and non-muscle cells, respectively. We have generated novel alpha-actinin alleles, which specifically remove the non-muscle isoform. Homozygous mutant flies are viable and fertile with no obvious defects.
View Article and Find Full Text PDFOrgans developing as appendages of the ectoderm are initiated from epithelial thickenings called placodes. Their formation is regulated by interactions between the ectoderm and underlying mesenchyme, and several signalling molecules have been implicated as activators or inhibitors of placode formation. Ectodysplasin (Eda) is a unique signalling molecule in the tumour necrosis factor family that, together with its receptor Edar, is necessary for normal development of ectodermal organs both in humans and mice.
View Article and Find Full Text PDFSignaling by Edar, a tumor necrosis factor receptor, is required for the development of ectodermal organs. Mutations in Edar or other molecules of the same signaling pathway cause ectodermal dysplasias in humans and mice. In these diseases, teeth are missing or malformed, and the development of hairs and several glands is hypoplastic.
View Article and Find Full Text PDFGenetic susceptibility for psoriasis is regulated to the greatest extent by the PSORS1 locus. Three psoriasis-associated susceptibility alleles have been identified within it, namely, HLACw6, HCR*WWCC and CDSN*5, but strong linkage disequilibrium between them has made it difficult to distinguish their individual genetic effects, and animal models to study their effects are not known. To study the function of HCR, we engineered transgenic mice with either a non-risk allele of HCR or the HCR*WWCC risk allele under the control of the cytokeratin-14 promoter.
View Article and Find Full Text PDFAll ectodermal organs, e.g. hair, teeth, and many exocrine glands, originate from two adjacent tissue layers: the epithelium and the mesenchyme.
View Article and Find Full Text PDFEctodysplasin (Eda), a member of the tumor necrosis factor (TNF) superfamily, and its receptor Edar are necessary components of ectodermal organ development. Analysis of their expression patterns and mutant phenotypes has shown that during mouse hair and tooth development they may be involved in signalling between separate epithelial compartments. Here we have analysed ectodysplasin and Edar expression in other embryonic mouse tissues, and show that Edar mRNA is confined to the epithelium.
View Article and Find Full Text PDFOrgans developing as ectodermal appendages share similar early morphogenesis and molecular mechanisms. Ectodysplasin, a signaling molecule belonging to the tumor necrosis factor family, and its receptor Edar are required for normal development of several ectodermal organs in humans and mice. We have overexpressed two splice forms of ectodysplasin, Eda-A1 and Eda-A2, binding to Edar and another TNF receptor, Xedar, respectively, under the keratin 14 (K14) promoter in the ectoderm of transgenic mice.
View Article and Find Full Text PDFX-linked and autosomal forms of anhidrotic ectodermal dysplasia syndromes (HED) are characterized by deficient development of several ectodermal organs, including hair, teeth and exocrine glands. The recent cloning of the genes that underlie these syndromes, ectodysplasin (ED1) and the ectodysplasin A receptor (EDAR), and their identification as a novel TNF ligand-receptor pair suggested a role for TNF signaling in embryonic morphogenesis. In the mouse, the genes of the spontaneous mutations Tabby (Ta) and downless (dl) were identified as homologs of ED1 and EDAR, respectively.
View Article and Find Full Text PDFTabby and downless mutant mice have identical phenotypes characterized by deficient development of several ectodermally derived organs such as teeth, hair, and sweat glands. Edar, encoded by the mouse downless gene and defective in human dominant and recessive forms of autosomal hypohidrotic ectodermal dysplasia (EDA) syndrome, is a new member of the tumor necrosis factor (TNF) receptor superfamily. The ligand of Edar is ectodysplasin, a TNF-like molecule mutated in the X-linked form of EDA and in the spontaneous mouse mutant Tabby.
View Article and Find Full Text PDFEctodermal dysplasia syndromes affect the development of several organs, including hair, teeth, and glands. The recent cloning of two genes responsible for these syndromes has led to the identification of a novel TNF family ligand, ectodysplasin, and TNF receptor, edar. This has indicated a developmental regulatory role for TNFs for the first time.
View Article and Find Full Text PDFTabby is a mouse mutant characterized by deficient development of the ectodermal organs: teeth, hair, and a subset of glands. Ectodysplasin, the protein encoded by the Tabby gene, was recently identified as a novel TNF-like transmembrane protein but little is known about its function. We have examined the Tabby tooth phenotype in detail by analysis of the adult and embryonic teeth.
View Article and Find Full Text PDFIn the mouse Tabby (Ta) mutant and human X-linked anhidrotic ectodermal dysplasia (EDA) syndrome development of several ectodermal organs such as hair, teeth, and sweat glands is impaired. The gene behind Tabby and EDA has been cloned, and several alternative transcripts have been isolated. The protein product named ectodysplasin had no obvious function or prominent homology to other known gene products apart from a short collagen-like sequence.
View Article and Find Full Text PDFAnhidrotic ectodermal dysplasia (EDA) is an X-linked recessive disorder which affects ectodermal structures. A cDNA encoding a 135 amino acid protein with mutations in 5-10% of EDA patients has been reported. We have built up a complete splicing map of the EDA gene and characterized the longest and what most probably represents the full-length EDA transcript, EDA-A.
View Article and Find Full Text PDFWe have generated and characterized a Drosophila cyclin E hypomorphic mutation, DmcycEJP, that is homozygous viable and fertile, but results in adults with rough eyes. The mutation arose from an internal deletion of an existing P[w+lacZ] element inserted 14 kb upstream of the transcription start site of the DmcycE zygotic mRNA. The presence of this deleted P element, but not the P[w+lacZ] element from which it was derived, leads to a decreased level of DmcycE expression during eye imaginal disc development.
View Article and Find Full Text PDFMouse Tabby (Ta) and X chromosome-linked human EDA share the features of hypoplastic hair, teeth, and eccrine sweat glands. We have cloned the Ta gene and find it to be homologous to the EDA gene. The gene is altered in two Ta alleles with a point mutation or a deletion.
View Article and Find Full Text PDFIn order to identify the gene for human X-linked anhidrotic ectodermal dysplasia (EDA), a translocation breakpoint in a female with t(X;1)(q13.1;p36.3) and EDA (patient AK) was finely mapped.
View Article and Find Full Text PDFWe have used a gene replacement strategy to delete the previously isolated gene [(1987) EMBO J. 6, 2825-2833] for the cytochrome c oxidase subunit I from Paracoccus denitrificans. The resulting mutant was still able to synthesize active cytochrome c oxidase.
View Article and Find Full Text PDFMol Cell Biochem
July 1987
DL-ethionine increases the activity of liver biotinidase, an enzyme which hydrolyzes biotinylesters and biotinylpeptides. Chronic DL-ethionine feeding increases transiently the activity of biotinidase in mouse and rat liver, after which it remains elevated in the serum. In the present work we show that both isomers of DL-ethionine are equally good enhancers of the liver biotinidase, while, 3-ethylthiopropionate, the toxic metabolite of DL-ethionine, has no effect on the biotinidase activity of either liver or serum.
View Article and Find Full Text PDFThe activities of the catecholamine-synthesizing and inactivating enzymes were determined in whole brains of two pairs of rat strains differing in their genetically-determined behavioural responses to ethanol. The alcohol-tolerant (AT) rats did not show any significant differences in enzyme activities when compared with the non-tolerant (ANT) strain. The activity of tyrosine hydroxylase was found to be significantly higher in brains of the alcohol-preferring (AA) rats, than in those of the alcohol-non-preferring (ANA) strain.
View Article and Find Full Text PDF