Publications by authors named "Piscopio A"

(1) Background: Histone deacetylases (HDACs) play a critical role in epigenetic signaling in cancer; however, available HDAC inhibitors have limited therapeutic windows and suboptimal pharmacokinetics (PK). This first-in-human phase I dose escalation study evaluated the safety, PK, pharmacodynamics (PDx), and efficacy of the oral Class I-targeting HDAC inhibitor bocodepsin (OKI-179). (2) Patients and Methods: Patients ( = 34) with advanced solid tumors were treated with OKI-179 orally once daily in three schedules: 4 days on 3 days off (4:3), 5 days on 2 days off (5:2), or continuous in 21-day cycles until disease progression or unacceptable toxicity.

View Article and Find Full Text PDF

Histone deacetylase inhibitors (HDACi) are part of a growing class of epigenetic therapies used for the treatment of cancer. Although HDACis are effective in the treatment of T-cell lymphomas, treatment of solid tumors with this class of drugs has not been successful. Overexpression of the multidrug resistance protein P-glycoprotein (P-gp), encoded by ABCB1, is known to confer resistance to the HDACi romidepsin in vitro, yet increased ABCB1 expression has not been associated with resistance in patients, suggesting that other mechanisms of resistance arise in the clinic.

View Article and Find Full Text PDF

Histone deacetylase inhibitors (HDACi) are currently being explored for the treatment of both solid and hematological malignancies. Although originally thought to exert cytotoxic responses through tumor-intrinsic mechanisms by increasing expression of tumor suppressor genes, several studies have demonstrated that therapeutic responses depend on an intact adaptive immune system: particularly CD8 T cells. It is therefore critical to understand how HDACi directly affects T cells in order to rationally design regimens for combining with immunotherapy.

View Article and Find Full Text PDF

Histone deacetylases (HDACs) play critical roles in epigenomic regulation, and histone acetylation is dysregulated in many human cancers. Although HDAC inhibitors are active in T-cell lymphomas, poor isoform selectivity, narrow therapeutic indices, and a deficiency of reliable biomarkers may contribute to the lack of efficacy in solid tumors. In this article, we report the discovery and preclinical development of the novel, orally bioavailable, class-I-selective HDAC inhibitor, OKI-179.

View Article and Find Full Text PDF

PD1 blockade is effective in a subset of patients with B-cell lymphoma (e.g., classical-Hodgkin lymphomas); however, most patients do not respond to anti-PD1 therapy.

View Article and Find Full Text PDF

[reaction: see text] The enantioselective conjugate addition of alpha-substituted malonates to aromatic nitroalkenes generates a stereocenter at the carbon bearing the aromatic group and an adjacent prochiral center from the alpha-substituted malonate. Nitro reduction followed by diastereoselective cyclization provides pyrrolidinones with two contiguous stereocenters, one of which is quaternary. This sequence was used for the preparation of the PDE4 inhibitor IC86518.

View Article and Find Full Text PDF

Adenosine has been suggested to play a role in asthma, possibly via activation of A(2B) adenosine receptors on mast cells and other pulmonary cells. We describe our initial efforts to discover a xanthine based selective A(2B) AdoR antagonist that resulted in the discovery of CVT-5440, a high affinity A(2B) AdoR antagonist with good selectivity (A(2B) AdoR K(i)=50 nM, selectivity A(1)>200: A(2A)>200: A(3)>167).

View Article and Find Full Text PDF

Olefin metathesis has emerged as a versatile technology for the synthesis of combinatorial libraries with regard to both scaffold creation and embellishment. The incessant pursuit of 'next-generation' catalysts continues to raise the bar in terms of efficiency, functional group tolerability, diminished reaction times and temperatures and has helped foster both diversity-oriented and target-directed efforts. This report summarizes recent contributions in the area of olefin cross-metathesis and ring-closing metathesis as applied to combinatorial and parallel synthesis.

View Article and Find Full Text PDF

The SAR of a series of 2-(7-chromanyl)benzoic acids has been investigated with the aim of identifying potent and selective LTB4 receptor antagonists that maintain potency in complex biological fluids. We found optimal activity in derivatives with electron-withdrawing groups in the benzoic acid ring and with an unsubstituted C-3 benzyl group on the chromanol nucleus. While compounds containing a 3-(4-phenyl)benzyl chromanol substituent were potent LTB4 receptor antagonists, the increased lipophilicity imparted by the additional phenyl substituent led to decreased potency in the presence of plasma proteins.

View Article and Find Full Text PDF

CP-195543 [(+)-2-(3-benzyl-4-hydroxy-chroman-7-yl)-4-trifluoromethyl-benzoic acid] is a structurally novel, selective and potent leukotriene B4 (LTB4) receptor antagonist. In vitro CP-195543 inhibited [3H]LTB4 binding to high-affinity LTB4 receptors on human neutrophils (HN) and murine spleen membranes with IC50 values of 6.8 nM (Ki = 4.

View Article and Find Full Text PDF