In 2018, Europe experienced a surge in measles cases, revealing the consequences of suboptimal immunization coverage. This trend was exacerbated by long-standing vaccine hesitancy. Parental attitudes toward childhood vaccines have increasingly shifted, influenced by ethical, religious, and safety concerns.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2024
Magnetic chitosan nanoparticles, synthesized by in situ precipitation, have been used as adsorbents to remove sulfamethoxazole (SMX), a sulfonamide antibiotic dangerous due to its capacity to enter ecosystems. The adsorption of SMX has been carried out in the presence of tertiary wastewaters from a depuration plant to obtain more realistic results. The effect of pH on the adsorption capacity significantly changed when carrying out the experiments in the presence of wastewater.
View Article and Find Full Text PDFA significant bottleneck for the industrial application of lipases stems from their poor stability in the presence of commercial triglycerides. This is mainly due to the inactivating effect of the products of triglyceride oxidation (PTO), which are usually produced when oils and fats, being imported from far countries, are stored for long periods. In this study, the immobilization of a lipase from on chitosan hydrogels has been carried out following two alternative approaches based on the enzyme adsorption and entrapment to increase the lipase stability under the operating conditions that are typical of oleochemical transformations.
View Article and Find Full Text PDFDyes are considered as one the most important classes of contaminants that threaten the environment and human life. The synergy between the adsorption capacity of chitosan hydrogels and the catalytic properties of the enzyme laccase was exploited to improve the removal of contaminants from a liquid stream. The adsorption capacity of a chitosan hydrogel was tested on three different textile dyes.
View Article and Find Full Text PDFTwo cyclodextrin-based nanosponges (CD-NSs) were synthesized using diamines with 6 and 12 methylene groups, CDHD6 and CDHD12, respectively, and used as adsorbents to remove 2,4-D from aqueous solutions. The physico-chemical characterization of the CD‒NSs demonstrated that, when using the linker with the longest chain length, the nanosponges show a more compact structure and higher thermal stability, probably due to hydrophobic interactions. SEM micrographs showed significant differences between the two nanosponges used.
View Article and Find Full Text PDFThree tailor-made magnetic metal-ceramic nanocomposites, obtained from zeolite A (ZA1 and ZA2) and a natural clinoptilolite (LB1), have been used as adsorbents to remove sulfanilamide (SA), a sulfonamide antibiotic of common use, from water. A patented process for the synthesis of nanocomposites has been suitably modified to maximize the efficiency of the SA removal, as well as to extend the applicability of the materials. The role played by the main process parameters (kinetic, pH, initial concentration of SA) has been characterized.
View Article and Find Full Text PDFThe generation and stabilization of reactive oxygen species (ROS), including the superoxide radical anion (O), have a huge potential in environmental remediation and industrial chemical processes, but they still remain a challenge. Here, we elucidate the formation, stability and reactivity of superoxide radicals spontaneously produced on the surface of a hybrid TiO-acetylacetonate material exposed to air. EPR spectra reveal an exceptional lifetime (up to three years, in air at room temperature) of the adsorbed O, which can also be easily regenerated after its decay.
View Article and Find Full Text PDFA mixed culture of oleaginous yeast Lipomyces starkeyi and wastewater native microalgae (mostly Scenedesmus sp. and Chlorella sp.) was performed to enhance lipid and biomass production from urban wastewaters.
View Article and Find Full Text PDFThe aim of the study was to investigate the feasibility of using irreversible electroporation (EP) as a microbial cell disruption technique to extract intracellular lipid within short time and in an eco-friendly manner. An EP circuit was designed and fabricated to obtain 4 kV with frequency of 100 Hz of square waves. The yeast cells of Lipomyces starkeyi (L.
View Article and Find Full Text PDFMicrobial oils are considered as alternative to vegetable oils or animal fats as biodiesel feedstock. Microalgae and oleaginous yeast are the main candidates of microbial oil producers' community. However, biodiesel synthesis from these sources is associated with high cost and process complexity.
View Article and Find Full Text PDFThe hybrid sol-gel zirconia-acetylacetonate amorphous material (HSGZ) shows high catalytic activity in oxidative degradation reactions without light or thermal pretreatment. This peculiar HSGZ ability derives from the generation of highly reactive oxygen radical species (ROS) upon exposure to air at room conditions. We disclose the origin of such unique feature by combining EPR and DRUV measurements with first-principles calculations.
View Article and Find Full Text PDFContext: Anorexia nervosa (AN) is an excessive form of calorie restriction (CR) associated with pathological weight loss and alterations of the immune system. However, AN patients seem to be protected from common viral infections.
Objectives: To investigate the metabolic and molecular adaptations induced by sustained extreme CR in the peripheral blood mononuclear cells (PBMCs) of patients with restrictive alimentary AN.
The oxidative degradation of 2-methyl-4-chlorophenoxyacetic acid (MCPA), 4-(4-chloro-2-methylphenoxy)butanoic acid (MCPB), 4-chlorophenoxyacetic acid (4-CPA) and 2,4-dichlorophenoxyacetic acid (2,4 D) by ZrO2-acetylacetonate hybrid catalyst (HSGZ) without light irradiation was assessed. The thermal stability of the catalyst was investigated by thermogravimetry, differential thermal analysis, and Fourier transform infrared spectroscopy. For each herbicide, a virtually complete removal in about 3 days without light irradiation at room temperature was achieved.
View Article and Find Full Text PDFMODY2 is the most prevalent monogenic form of diabetes in Italy with an estimated prevalence of about 0.5-1.5%.
View Article and Find Full Text PDFFood Addit Contam Part B Surveill
December 2014
Different parts of plant foods are generally discarded by consumers such as peel, stalk and leaves, which could however possess a nutritional value. However, few studies have analysed the composition of these marginal foods. The phenolic compound, flavonoid, polyamine, nitrate and pesticide contents of parts of vegetables that are usually discarded--but which were cultivated according to conventional and non-conventional procedures--were analysed to provide suggestions on how to improve the consumption of these parts and to reduce the production of urban solid waste.
View Article and Find Full Text PDFA class II hybrid sol-gel material was prepared starting from zirconium(IV) propoxide and 2,4-pentanedione and its catalytic activity in the removal of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) was revealed. The thermal and structural characterization, performed by thermogravimetry, differential thermal analysis, and diffuse reflectance Fourier transform infrared spectroscopy, demonstrated the hybrid nature of the material. The structure of the material can be described as a polymeric network of zirconium oxo clusters, on the surface of which large part of Zr(4+) ions are involved in strong complexation equilibria with acetylacetonate (acac) ligands.
View Article and Find Full Text PDFTwo mesoporous metal oxides, Al(2)O(3) and Fe(2)O(3), were evaluated as regards their ability to remove simazine, a highly persistent herbicide of s-triazines, using a batch equilibrium method. The effect of several experimental parameters such as pH, contact time, initial concentration and sorbent dosage on the sorption of the herbicide was investigated. The maximum sorption of simazine on Al(2)O(3) and Fe(2)O(3) was observed at pH 6.
View Article and Find Full Text PDFA single-stage sol-gel route was set to entrap yeast cells of Lipomyces starkeyi in a zirconia (ZrO(2)) matrix, and the remediation ability of the resulting catalyst toward a phenoxy acid herbicide, 4-chloro-2-methylphenoxyacetic acid (MCPA), was studied. It was found that the experimental procedure allowed a high dispersion of the microorganisms into the zirconia gel matrix; the ZrO(2) matrix exhibited a significant sorption capacity of the herbicide, and the entrapped cells showed a degradative activity toward MCPA. The combination of these effects leads to a nearly total removal efficiency (>97%) of the herbicide at 30 °C within 1 h incubation time from a solution containing a very high concentration of MCPA (200 mg L(-1)).
View Article and Find Full Text PDFLipomyces starkey were able to survive and proliferate in the presence of olive oil mill wastewaters (OMW), a medium difficult to process by biological treatments, due to the antimicrobial activities of their phenolic components. The microorganisms were grown in the presence of undiluted OMW, without external organic supplements, producing a significant reduction of both the total organic carbon (TOC) and the total phenols content. The OMW treated by L.
View Article and Find Full Text PDFA prolipase from Rhizopus oryzae (proROL) was engineered in order to increase its stability toward lipid oxidation products such as aldehydes with the aim of improving its performance in oleochemical industries. Out of 22 amino acid residues (15 Lys and 7 His) prone to react with aldehydes, 6 Lys and all His residues (except for the catalytic histidine) were chosen and subjected to saturation mutagenesis. In order to quickly and reliably identify stability mutants within the resulting libraries, active variants were prescreened by an activity staining method on agar plates.
View Article and Find Full Text PDFThe alpha-hydroxy esters are increasingly employed in cosmetic, food, and pharmaceutical formulations as they determine reduced skin-irritant effects in comparison with the respective acids, offering similar hygroscopic, emulsifying, and exfoliating properties. The enzymatic synthesis of lactate esters in nonaqueous systems was studied as regards the influence of the critical process parameters, to enable a comparison between the most commonly used synthetic routes, namely, esterification and transesterification. The experimental results showed that the direct esterification of lactic acid with butanol may be limited by the reduced lipase stability in the presence of the acid (substrate) and of the water (product), in particular when solvent-free media are used.
View Article and Find Full Text PDFThe use of dry mycelium of Rhizopus oryzae as biocatalyst for ester production in organic solvent has been studied. Mycelia with notable carboxylesterase activity were produced when different Tweens (20, 40, 60 and 80) were employed as main carbon source for the growth. Dry mycelium of four strains of Rhizopus oryzae proved effective for efficiently catalysing the synthesis of different flavour esters (hexylacetate and butyrate, geranylacetate and butyrate) starting from the corresponding alcohol and free acid, including acetic acid.
View Article and Find Full Text PDFA very small-scale continuous flow reactor has been designed for use with enzymes in organic media, particularly for operational stability studies. It is constructed from fairly inexpensive components, and typically uses 5 mg of catalyst and flow rates of 1 to 5 mL/h, so only small quantities of feedstock need to be handled. The design allows control of the thermodynamic water activity of the feed, and works with temperatures up to at least 80 degrees C.
View Article and Find Full Text PDF