We derive a closed-form expression for the weak localization (WL) corrections to the magnetoconductivity of a 2D electron system with arbitrary Rashba α and Dresselhaus β (linear) and β_{3} (cubic) spin-orbit interaction couplings, in a perpendicular magnetic field geometry. In a system of reference with an in-plane z[over ^] axis chosen as the high spin-symmetry direction at α=β, we formulate a new algorithm to calculate the three independent contributions that lead to WL. The antilocalization is counterbalanced by the term associated with the spin relaxation along z[over ^], dependent only on α-β.
View Article and Find Full Text PDFTopological qubits based on Majorana Fermions have the potential to revolutionize the emerging field of quantum computing by making information processing significantly more robust to decoherence. Nanowires are a promising medium for hosting these kinds of qubits, though branched nanowires are needed to perform qubit manipulations. Here we report a gold-free templated growth of III-V nanowires by molecular beam epitaxy using an approach that enables patternable and highly regular branched nanowire arrays on a far greater scale than what has been reported thus far.
View Article and Find Full Text PDF