This paper presents the engineering and validation of an enabling technology that facilitates new capabilities in in vitro cell models for high-throughput screening and tissue engineering applications. This is conducted through a computerized system that allows the design and deposition of high-fidelity microscale patterned coatings that selectively alter the chemical and topographical properties of cell culturing surfaces. Significantly, compared to alternative methods for microscale surface patterning, this is a digitally controlled and automated process thereby allowing scientists to rapidly create and explore an almost infinite range of cell culture patterns.
View Article and Find Full Text PDFRNA interference mediated by short interfering RNA (siRNA) molecules represents a powerful genetic tool with an increasing interest as potential therapeutics. Current bioinformatic approaches to design functional siRNA molecules take into account both empirical and rational approaches to identify selectable characteristics of active and specific siRNA molecules and focusing the downstream events in the RNAi pathway, such as target messenger RNA accessibility. The design of effective siRNA molecules is the key to successful experimentation with RNAi.
View Article and Find Full Text PDFObjective: Here we report the improved results of a new siRNA design program and analysis tool called siRNA_profile that reveals an additional criterion for bioinformatic search of highly functional siRNA sequences.
Methods: We retrospectively analysed over 2400 siRNA sequences from 34 genes and with known efficacies to categorize factors that differentiate highly, moderately and non-functional siRNA sequences in more detail. We tested the biological relevance of siRNA_profile in CHO cells stably expressing human TRACP.
Unlabelled: Reactive oxygen species generating activity of tartrate-resistant acid phosphatase (TRACP) has been suggested to have several functions in TRACP expressing bone resorbing osteoclasts, macrophages, and dendritic cells. This work aimed to study the TRACP knock down phenotype in osteoclasts by using antisense DNA and RNA interference methods. Unexpectedly, both TRACP specific DNA oligonucleotides and siRNA molecules extensively increased the TRACP expression in human osteoclasts and monocytes.
View Article and Find Full Text PDFShort interfering RNA (siRNA) molecules with good gene-silencing properties are needed for drug development based on RNA interference (RNAi). An initial step in RNAi is the activation of the RNA-induced silencing complex RISC, which requires degradation of the sense strand of the siRNA duplex. Although various chemical modifications have been introduced to the antisense strand, modifications to the Argonaute2 (Ago2) cleavage site in the sense strand have, so far, not been described in detail.
View Article and Find Full Text PDFThe multisubunit enzyme V-ATPase harbours isoforms of individual subunits. a3 is one of four 116 kDa subunit a isoforms, and it is crucial for bone resorption. We used small interfering RNA (siRNA) molecules to knock down a3 in rat osteoclast cultures.
View Article and Find Full Text PDF