The cost of germline maintenance gives rise to a trade-off between lowering the deleterious mutation rate and investing in life history functions. Therefore, life history and the mutation rate coevolve, but this coevolution is not well understood. We develop a mathematical model to analyse the evolution of resource allocation traits, which simultaneously affect life history and the deleterious mutation rate.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
May 2023
Evolutionary game theory and the adaptive dynamics approach have made invaluable contributions to understanding how gradual evolution leads to adaptation when individuals interact. Here, we review some of the basic tools that have come out of these contributions to model the evolution of quantitative traits in complex populations. We collect together mathematical expressions that describe directional and disruptive selection in class- and group-structured populations in terms of individual fitness, with the aims of bridging different models and interpreting selection.
View Article and Find Full Text PDFMost traits expressed by organisms, such as gene expression profiles, developmental trajectories, behavioural sequences and reaction norms are function-valued traits (colloquially "phenotypically plastic traits"), since they vary across an individual's age and in response to various internal and/or external factors (state variables). Furthermore, most organisms live in populations subject to limited genetic mixing and are thus likely to interact with their relatives. We here formalise selection on genetically determined function-valued traits of individuals interacting in a group-structured population, by deriving the marginal version of Hamilton's rule for function-valued traits.
View Article and Find Full Text PDFModels of sex-allocation conflict are central to evolutionary biology but have mostly assumed static decisions, where resource allocation strategies are constant over colony lifespan. Here, we develop a model to study how the evolution of dynamic resource allocation strategies is affected by the queen-worker conflict in annual eusocial insects. We demonstrate that the time of dispersal of sexuals affects the sex-allocation ratio through sexual selection on males.
View Article and Find Full Text PDFIn eusocial species, some individuals sacrifice their own reproduction for the benefit of others. It has been argued that the evolution of sterile helpers in eusocial insects requires synergistic efficiency gains through cooperation that are uncommon in cooperatively breeding vertebrates and that this precludes a universal ecological explanation of social systems with alloparental care. In contrast, using a model that incorporates realistic ecological mechanisms of population regulation, we show here that constraints on independent breeding (through nest-site limitation and dispersal mortality) eliminate any need for synergistic efficiency gains: sterile helpers may evolve even if they are relatively inefficient at rearing siblings, reducing their colony's per-capita productivity.
View Article and Find Full Text PDF