Publications by authors named "Piraud M"

Targeted (nano-)drug delivery is essential for treating respiratory diseases, which are often confined to distinct lung regions. However, spatio-temporal profiling of drugs or nanoparticles (NPs) and their interactions with lung macrophages remains unresolved. Here, we present LungVis 1.

View Article and Find Full Text PDF

Targeted spatial transcriptomic methods capture the topology of cell types and states in tissues at single-cell and subcellular resolution by measuring the expression of a predefined set of genes. The selection of an optimal set of probed genes is crucial for capturing the spatial signals present in a tissue. This requires selecting the most informative, yet minimal, set of genes to profile (gene set selection) for which it is possible to build probes (probe design).

View Article and Find Full Text PDF
Article Synopsis
  • Surgical resection is the primary treatment for patients with large or symptomatic brain metastases, but there's still a risk of local failure, prompting the development of a prediction tool to identify those at high risk.
  • Data from the AURORA study included 253 patients for training and 99 for external testing, utilizing radiomic features from MRI scans to enhance prediction accuracy.
  • The elastic net regression model combining radiomic and clinical features showed a significant improvement in predicting local failure, with lower risk groups experiencing only 9% failure at 24 months compared to 74% in high-risk groups, suggesting potential for improved patient follow-up and treatment.
View Article and Find Full Text PDF

Large language models have greatly enhanced our ability to understand biology and chemistry, yet robust methods for structure-based drug discovery, quantum chemistry and structural biology are still sparse. Precise biomolecule-ligand interaction datasets are urgently needed for large language models. To address this, we present MISATO, a dataset that combines quantum mechanical properties of small molecules and associated molecular dynamics simulations of ~20,000 experimental protein-ligand complexes with extensive validation of experimental data.

View Article and Find Full Text PDF

Automated detection of specific cells in three-dimensional datasets such as whole-brain light-sheet image stacks is challenging. Here, we present DELiVR, a virtual reality-trained deep-learning pipeline for detecting c-Fos cells as markers for neuronal activity in cleared mouse brains. Virtual reality annotation substantially accelerated training data generation, enabling DELiVR to outperform state-of-the-art cell-segmenting approaches.

View Article and Find Full Text PDF

CRISPR interference (CRISPRi) is the leading technique to silence gene expression in bacteria; however, design rules remain poorly defined. We develop a best-in-class prediction algorithm for guide silencing efficiency by systematically investigating factors influencing guide depletion in genome-wide essentiality screens, with the surprising discovery that gene-specific features substantially impact prediction. We develop a mixed-effect random forest regression model that provides better estimates of guide efficiency.

View Article and Find Full Text PDF

Background: Many automatic approaches to brain tumor segmentation employ multiple magnetic resonance imaging (MRI) sequences. The goal of this project was to compare different combinations of input sequences to determine which MRI sequences are needed for effective automated brain metastasis (BM) segmentation.

Methods: We analyzed preoperative imaging (T1-weighted sequence ± contrast-enhancement (T1/T1-CE), T2-weighted sequence (T2), and T2 fluid-attenuated inversion recovery (T2-FLAIR) sequence) from 339 patients with BMs from seven centers.

View Article and Find Full Text PDF

Metabolic rewiring is essential for cancer onset and progression. We previously showed that one-carbon metabolism-dependent formate production often exceeds the anabolic demand of cancer cells, resulting in formate overflow. Furthermore, we showed that increased extracellular formate concentrations promote the in vitro invasiveness of glioblastoma cells.

View Article and Find Full Text PDF

Meningiomas are the most common primary intracranial tumor in adults and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on multiparametric MRI (mpMRI) for diagnosis, treatment planning, and longitudinal treatment monitoring; yet automated, objective, and quantitative tools for non-invasive assessment of meningiomas on mpMRI are lacking. The BraTS meningioma 2023 challenge will provide a community standard and benchmark for state-of-the-art automated intracranial meningioma segmentation models based on the largest expert annotated multilabel meningioma mpMRI dataset to date.

View Article and Find Full Text PDF
Article Synopsis
  • Automated brain tumor segmentation methods have reached a level of performance that is clinically useful, relying on MRI modalities like T1, T2, and FLAIR images.
  • These methods often face challenges due to missing sequences caused by issues like time constraints and patient motion, making it crucial to find ways to substitute missing modalities for better segmentation.
  • The Brain MR Image Synthesis Benchmark (BraSyn) was established to evaluate image synthesis techniques that can generate these missing MRI modalities, aiming to enhance the automation of brain tumor segmentation processes.
View Article and Find Full Text PDF

Artificial intelligence (AI) is proliferating and developing faster than any domain scientist can adapt. To support the scientific enterprise in the Helmholtz association, a network of AI specialists has been set up to disseminate AI expertise as an infrastructure among domain scientists. As this effort exposes an evolutionary step in science organization in Germany, this article aspires to describe our setup, goals, and motivations.

View Article and Find Full Text PDF

Whole-body imaging techniques play a vital role in exploring the interplay of physiological systems in maintaining health and driving disease. We introduce wildDISCO, a new approach for whole-body immunolabeling, optical clearing and imaging in mice, circumventing the need for transgenic reporter animals or nanobody labeling and so overcoming existing technical limitations. We identified heptakis(2,6-di-O-methyl)-β-cyclodextrin as a potent enhancer of cholesterol extraction and membrane permeabilization, enabling deep, homogeneous penetration of standard antibodies without aggregation.

View Article and Find Full Text PDF
Article Synopsis
  • Gliomas are the most common and deadliest primary brain tumors, with a survival rate under 2 years post-diagnosis, and pose significant challenges in diagnosis and treatment, especially in low- and middle-income countries.
  • While research has improved treatment outcomes in wealthier regions, survival rates remain poor in places like Sub-Saharan Africa due to late diagnosis and lower-quality MRI technology.
  • The BraTS-Africa Challenge aims to integrate glioma MRI cases from Sub-Saharan Africa into global efforts to develop advanced computer-aided diagnostic tools that could improve detection and treatment in resource-limited healthcare settings.
View Article and Find Full Text PDF

The translation of AI-generated brain metastases (BM) segmentation into clinical practice relies heavily on diverse, high-quality annotated medical imaging datasets. The BraTS-METS 2023 challenge has gained momentum for testing and benchmarking algorithms using rigorously annotated internationally compiled real-world datasets. This study presents the results of the segmentation challenge and characterizes the challenging cases that impacted the performance of the winning algorithms.

View Article and Find Full Text PDF

Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials require multi-institutional collaborations.

View Article and Find Full Text PDF

Introduction: Interstitial lung disease (ILD) is a heterogenous group of lung disorders where destruction and incomplete regeneration of the lung parenchyma often results in persistent architectural distortion of the pulmonary scaffold. Continuous mesenchyme-centered, disease-relevant signaling likely initiates and perpetuates the fibrotic remodeling process, specifically targeting the epithelial cell compartment, thereby destroying the gas exchange area.

Methods: With the aim of identifying functional mediators of the lung mesenchymal-epithelial crosstalk with potential as new targets for therapeutic strategies, we developed a 3D organoid co-culture model based on human induced pluripotent stem cell-derived alveolar epithelial type 2 cells that form alveolar organoids in presence of lung fibroblasts from fibrotic-ILD patients, in our study referring to cases of pulmonary fibrosis, as well as control cell line (IMR-90).

View Article and Find Full Text PDF

Echocardiography, a rapid and cost-effective imaging technique, assesses cardiac function and structure. Despite its popularity in cardiovascular medicine and clinical research, image-derived phenotypic measurements are manually performed, requiring expert knowledge and training. Notwithstanding great progress in deep-learning applications in small animal echocardiography, the focus has so far only been on images of anesthetized rodents.

View Article and Find Full Text PDF

While genetically encoded reporters are common for fluorescence microscopy, equivalent multiplexable gene reporters for electron microscopy (EM) are still scarce. Here, by installing a variable number of fixation-stable metal-interacting moieties in the lumen of encapsulin nanocompartments of different sizes, we developed a suite of spherically symmetric and concentric barcodes (EMcapsulins) that are readable by standard EM techniques. Six classes of EMcapsulins could be automatically segmented and differentiated.

View Article and Find Full Text PDF

In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018. The image dataset is diverse and contains primary and secondary tumors with varied sizes and appearances with various lesion-to-background levels (hyper-/hypo-dense), created in collaboration with seven hospitals and research institutions. Seventy-five submitted liver and liver tumor segmentation algorithms were trained on a set of 131 computed tomography (CT) volumes and were tested on 70 unseen test images acquired from different patients.

View Article and Find Full Text PDF

We present DeepVesselNet, an architecture tailored to the challenges faced when extracting vessel trees and networks and corresponding features in 3-D angiographic volumes using deep learning. We discuss the problems of low execution speed and high memory requirements associated with full 3-D networks, high-class imbalance arising from the low percentage (<3%) of vessel voxels, and unavailability of accurately annotated 3-D training data-and offer solutions as the building blocks of DeepVesselNet. First, we formulate 2-D orthogonal cross-hair filters which make use of 3-D context information at a reduced computational burden.

View Article and Find Full Text PDF
Article Synopsis
  • AICA-ribosiduria is a rare genetic disorder caused by mutations in the ATIC gene, critical for purine synthesis, leading to high levels of AICA-riboside in urine.
  • Recent reports document three new cases, expanding the known instances of this condition from one to four, with observed symptoms including severe developmental delays, vision problems, growth issues, and physical deformities.
  • The condition may also involve frequent early-onset epilepsy and other less common complications, potentially linked to how the ATIC gene's dysfunction affects cellular processes due to accumulated AICA-riboside.
View Article and Find Full Text PDF

Tissue clearing methods enable the imaging of biological specimens without sectioning. However, reliable and scalable analysis of large imaging datasets in three dimensions remains a challenge. Here we developed a deep learning-based framework to quantify and analyze brain vasculature, named Vessel Segmentation & Analysis Pipeline (VesSAP).

View Article and Find Full Text PDF

The advent of medical imaging and automatic image analysis is bringing the full quantitative assessment of lesions and tumor burden at every clinical examination within reach. This opens avenues for the development and testing of functional disease models, as well as their use in the clinical practice for personalized medicine. In this paper, we introduce a Bayesian statistical framework, based on mixed-effects models, to quantitatively test and learn functional disease models at different scales, on population longitudinal data.

View Article and Find Full Text PDF

Objective: To perform a systematic analysis and scoring of brain MRI white matter hyperintensities (WMH) in adult-onset Krabbe disease.

Methods: We retrospectively collected basic clinical data and the first available brain MRI from patients with confirmed Krabbe disease with first clinical manifestations beyond 10 years of age. Data were obtained from our reference center for lysosomal diseases (n = 6) and from contacted authors of published articles describing patients with adult-onset Krabbe disease (n = 15).

View Article and Find Full Text PDF