This article explores the novel use of natural deep eutectic solvents (NaDES) in real food by incorporating them into mayonnaise, either alone or with pigmented rice bran (RB). Results showed that NaDES-fortified mayonnaises could prevent lipid oxidation. Notably, mayonnaises with NaDES2 (betaine:sucrose:water) significantly reduced the production of lipid hydroperoxides, which was maintained to an average of 2.
View Article and Find Full Text PDFHigh-performance size exclusion chromatography (HPSEC) equipped with an evaporative light scattering detector (ELSD) was utilized for characterization of palm fatty acid distillate (PFAD) and its esterified products, with a particular focus on lipid profiles and diacylglycerol (DAG) regioisomers. The separation of triacylglycerol (TAG), DAG, monoacylglycerol (MAG), and free fatty acid (FFA) was achieved through a single 100-Å Phenogel column, coupled with a 2-cm C18 guard, utilizing toluene/acetic acid (100:0.25, v/v) as the mobile phase.
View Article and Find Full Text PDFVitamin E (tocopherols and tocotrienols) and γ-oryzanol are two minor constituents of rice bran oil (RBO) and are known to be potential bioactive compounds. The content of γ-oryzanol, a unique antioxidant found only in RBO, is a key factor in determining the retail price of the oil. Limitations of conventional HPLC columns for vitamin E and γ-oryzanol analysis are the alteration of these components and the time-consuming need for pretreatment of samples by saponification.
View Article and Find Full Text PDFEthyl ferulate (EF) is a ferulic acid (FA) derivative with high commercial value. It is not found naturally and is mostly synthesized from FA via esterification with ethanol. The present work aimed to synthesize the EF from γ-oryzanol, a natural antioxidant from rice bran oil via acid-catalyzed transethylation at refluxing temperature of ethanol.
View Article and Find Full Text PDFA rapid and low energy consumption method for the recovery of γ-oryzanol from rice bran acid oil (RBAO), a byproduct of rice bran oil (RBO) refining, is presented. The RBAO was converted to the fatty acid ethyl ester (FAEE) and was used as the starting material. The dissolved γ-oryzanol was separated from the FAEE using an acid-base extraction method with alkaline aqueous ethanol and hexane as extraction media.
View Article and Find Full Text PDF