Publications by authors named "Piquette M"

Converting triplet dioxygen into a powerful oxidant is fundamentally important to life. The study reported herein quantitatively examines the formation of a well-characterized, reactive, O-derived thiolate ligated Fe-superoxo using low-temperature stopped-flow kinetics. Comparison of the kinetic barriers to the formation of this species two routes, involving either the addition of (a) O to [Fe(S N(Pr,Pr))] (1) or (b) superoxide to [Fe(S N(Pr,Pr))] (3) is shown to provide insight into the mechanism of O activation.

View Article and Find Full Text PDF

Permanently polarized Polyvinylidene Fluoride (PVDF) films have been used on a variety of spacecraft as in situ dust detectors to measure the size and spatial distributions of micron and sub-micron dust particles. The detectors produce a short electric pulse when impacted by a hypervelocity dust particle. The pulse amplitude depends on the mass and relative speed of the dust grain.

View Article and Find Full Text PDF

The Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, is composed of primitive objects preserving information about Solar System formation. In January 2019, the New Horizons spacecraft flew past one of these objects, the 36-kilometer-long contact binary (486958) Arrokoth (provisional designation 2014 MU). Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters in diameter) within a radius of 8000 kilometers.

View Article and Find Full Text PDF

Oxoiron(IV) is a common catalytic byproduct observed in the oxidation of alkenes by the combination of HO and nonheme iron catalysts including complex , FePDP* (where PDP* = bis(3,5-dimethyl-4-methoxypyridyl-2-methyl)-(,)-2,2'-bipyrrolidine). The oxoiron(IV) species have been proposed to arise by O-O homolysis of the peroxyiron(III) or acylperoxyiron(III) intermediates formed during the presumed Fe-Fe catalytic cycle and have generally been regarded as off-pathway. We generated complex (λ = 730 nm, ε = 350 M cm) directly from and an oxygen atom donor IBX (isopropyl 2-iodoxybenzoate) in acetonitrile in the temperature range from -35 to +25 °C under stopped-flow conditions.

View Article and Find Full Text PDF

Herein we quantitatively investigate how metal ion Lewis acidity and steric properties influence the kinetics and thermodynamics of dioxygen binding versus release from structurally analogous Mn-O complexes, as well as the barrier to Mn peroxo O-O bond cleavage, and the reactivity of Mn oxo intermediates. Previously we demonstrated that the steric and electronic properties of Mn-OOR complexes containing N-heterocyclic (N) ligand scaffolds can have a dramatic influence on alkylperoxo O-O bond lengths and the barrier to alkylperoxo O-O bond cleavage. Herein, we examine the dioxygen reactivity of a new Mn complex containing a more electron-rich, less sterically demanding N ligand scaffold, and compare it with previously reported Mn complexes.

View Article and Find Full Text PDF

Pluto energies of a few kiloelectron volts and suprathermal ions with tens of kiloelectron volts and above. We measure this population using the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument on board the New Horizons spacecraft that flew by Pluto in 2015. Even though the measured ions have gyroradii larger than the size of Pluto and the cross section of its magnetosphere, we find that the boundary of the magnetosphere is depleting the energetic ion intensities by about an order of magnitude close to Pluto.

View Article and Find Full Text PDF

The Kuiper Belt is a distant region of the outer Solar System. On 1 January 2019, the New Horizons spacecraft flew close to (486958) 2014 MU, a cold classical Kuiper Belt object approximately 30 kilometers in diameter. Such objects have never been substantially heated by the Sun and are therefore well preserved since their formation.

View Article and Find Full Text PDF

The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux.

View Article and Find Full Text PDF

The Pluto system was recently explored by NASA's New Horizons spacecraft, making closest approach on 14 July 2015. Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow.

View Article and Find Full Text PDF