Measuring resistances at the nanoscale has attracted recent attention for developing microelectronic components, memory devices, molecular electronics, and two-dimensional materials. Despite the decisive contribution of scanning probe microscopy in imaging resistance and current variations, measurements have remained restricted to qualitative comparisons. Reference resistance calibration samples are key to advancing the research-to-manufacturing process of nanoscale devices and materials through calibrated, reliable, and comparable measurements.
View Article and Find Full Text PDFStem cells have the capacity to ensure the renewal of tissues and organs. They could be used in the future for a wide range of therapeutic purposes and are preserved at liquid nitrogen temperature to prevent any chemical or biological activity up to several decades before their use. We show that the cryogenized cells accumulate damages coming from natural radiations, potentially inducing DNA double-strand breaks (DSBs).
View Article and Find Full Text PDFThe importance of high dielectric constant materials in the development of high frequency nano-electronic devices is undeniable. Their polarization properties are directly dependent on the value of their relative permittivity. We report here on the nanoscale metrological quantification of the dielectric constants of two high-κ materials, lead zirconate titanate (PZT) and lead magnesium niobate-lead titanate (PMN-PT), in the GHz range using scanning microwave microscopy (SMM).
View Article and Find Full Text PDFReference samples are commonly used for the calibration and quantification of nanoscale electrical measurements of capacitances and dielectric constants in scanning microwave microscopy (SMM) and similar techniques. However, the traceability of these calibration samples is not established. In this work, we present a detailed investigation of most possible error sources that affect the uncertainty of capacitance measurements on the reference calibration samples.
View Article and Find Full Text PDFThe Modane underground laboratory (LSM) is the deepest operating underground laboratory in Europe. It is located under the Fréjus peak in Savoie Alps in France, with average overburden of 4800 m w. e.
View Article and Find Full Text PDFOver millennia, life has been exposed to ionizing radiation from cosmic rays and natural radioisotopes. Biological experiments in underground laboratories have recently demonstrated that the contemporary terrestrial radiation background impacts the physiology of living organisms, yet the evolutionary consequences of this biological stress have not been investigated. Explaining the mechanisms that give rise to the results of underground biological experiments remains difficult, and it has been speculated that hereditary mechanisms may be involved.
View Article and Find Full Text PDFThe main limitation in the high-sensitive HPGe gamma-ray spectrometry has been the detector background, even for detectors placed deep underground. Environmental radionuclides such as K and decay products in the U and Th chains have been identified as the most important radioactive contaminants of construction parts of HPGe gamma-ray spectrometers. Monte Carlo simulations have shown that the massive inner and outer lead shields have been the main contributors to the HPGe-detector background, followed by aluminum cryostat, copper cold finger, detector holder and the lead ring with FET.
View Article and Find Full Text PDFA calibration algorithm based on one-port vector network analyzer (VNA) calibration for scanning microwave microscopes (SMMs) is presented and used to extract quantitative carrier densities from a semiconducting n-doped GaAs multilayer sample. This robust and versatile algorithm is instrument and frequency independent, as we demonstrate by analyzing experimental data from two different, cantilever- and tuning fork-based, microscope setups operating in a wide frequency range up to 27.5 GHz.
View Article and Find Full Text PDFWe report the results of a first experimental search for lepton number violation by four units in the neutrinoless quadruple-β decay of ^{150}Nd using a total exposure of 0.19 kg yr recorded with the NEMO-3 detector at the Modane Underground Laboratory. We find no evidence of this decay and set lower limits on the half-life in the range T_{1/2}>(1.
View Article and Find Full Text PDFA set of ultra-low value capacitance standards together with a programmable coaxial multiplexer (mux) have been developed. The mux allows the connection of these capacitances in parallel configuration and they together form the programmable capacitance standard. It is capable of producing decadic standard capacitances from 10 aF to at least 0.
View Article and Find Full Text PDFThe BiPo-3 detector is a low radioactive detector dedicated to measuring ultra-low natural contaminations of Tl and Bi in thin materials, initially developed to measure the radiopurity of the double β decay source foils of the SuperNEMO experiment at the μBq/kg level. The BiPo-3 technique consists in installing the foil of interest between two thin ultra-radiopure scintillators coupled to low radioactive photomultipliers. The design and performances of the detector are presented.
View Article and Find Full Text PDFThis paper presents a new gamma-gamma coincidence spectrometer to measure the radioactivity in environmental samples. This system, called Leda, is made of 2 HPGe and 1 NaI(Tl). The different analysis channels (single, in coincidence or in anti-coincidence) possible thanks to the digital electronics are described.
View Article and Find Full Text PDFThis paper describes the mechanical and electrical modifications carried out on the LNE watt balance to reduce the noise level associated with the static phase. The mechanical improvements concern the home-made balance beam using flexure hinges as pivots of the force comparator. The electrical improvements involve the source used to servo-control the equilibrium position of the beam during the static phase.
View Article and Find Full Text PDFAppl Radiat Isot
March 2016
This paper presents the latest development of the laboratory to measure the natural and artificial massic activities in environmental samples. The measurement method of coincident emitters by gamma-gamma coincidence using an anti-Compton device and its digital electronics is described. Results obtained with environmental samples are shown.
View Article and Find Full Text PDFThe radioactivity levels in the air of the radionuclides released by the Fukushima accident were measured at the Laboratoire Souterrain de Modane, in the South-East of France, during the period 25 March-18 April 2011. Air-filters from the ventilation system exposed for one or two days were measured using low-background gamma-ray spectrometry. In this paper we present the activity concentrations obtained for the radionuclides (131)I, (132)Te, (134)Cs, (137)Cs, (95)Nb, (95)Zr, (106)Ru, (140)Ba/La and (103)Ru.
View Article and Find Full Text PDFWe report results from the NEMO-3 experiment based on an exposure of 1275 days with 661 g of (130)Te in the form of enriched and natural tellurium foils. The ββ decay rate of (130)Te is found to be greater than zero with a significance of 7.7 standard deviations and the half-life is measured to be T(½)(2ν) = [7.
View Article and Find Full Text PDFThe KamLAND experiment has determined a precise value for the neutrino oscillation parameter Deltam21(2) and stringent constraints on theta12. The exposure to nuclear reactor antineutrinos is increased almost fourfold over previous results to 2.44 x 10(32) proton yr due to longer livetime and an enlarged fiducial volume.
View Article and Find Full Text PDFThe Kamioka Liquid scintillator Anti-Neutrino Detector is used in a search for single neutron or two-neutron intranuclear disappearance that would produce holes in the -shell energy level of (12)C nuclei. Such holes could be created as a result of nucleon decay into invisible modes (inv), e.g.
View Article and Find Full Text PDFThe NEMO 3 detector, which has been operating in the Fréjus underground laboratory since February 2003, is devoted to the search for neutrinoless double-beta decay (beta beta 0v). The half-lives of the two neutrino double-beta decay (beta beta 2v) have been measured for 100Mo and 82Se. After 389 effective days of data collection from February 2003 until September 2004 (phase I), no evidence for neutrinoless double-beta decay was found from approximately 7 kg of 100Mo and approximately 1 kg of 82Se.
View Article and Find Full Text PDFThe detection of electron antineutrinos produced by natural radioactivity in the Earth could yield important geophysical information. The Kamioka liquid scintillator antineutrino detector (KamLAND) has the sensitivity to detect electron antineutrinos produced by the decay of 238U and 232Th within the Earth. Earth composition models suggest that the radiogenic power from these isotope decays is 16 TW, approximately half of the total measured heat dissipation rate from the Earth.
View Article and Find Full Text PDFWe present results of a study of neutrino oscillation based on a 766 ton/year exposure of KamLAND to reactor antineutrinos. We observe 258 nu (e) candidate events with energies above 3.4 MeV compared to 365.
View Article and Find Full Text PDFData corresponding to a KamLAND detector exposure of 0.28 kton yr has been used to search for nu;(e)'s in the energy range 8.3