Comp Biochem Physiol A Mol Integr Physiol
December 2015
Temperature and ultraviolet radiation (UVR) are key environmental drivers that are linked in their effects on cellular damage. Exposure to both high temperatures and UVR can cause cellular damage that result in the up-regulation of common protective mechanisms, such as the induction of heat shock proteins (Hsps) and antioxidants. As such, the interactive effects of these stressors at the cellular level may determine physiological limits, such as thermal tolerance.
View Article and Find Full Text PDFDaily thermal fluctuations (DTFs) impact the capacity of ectotherms to maintain performance and energetic demands because of thermodynamic effects on physiological processes. Mechanisms that reduce the thermal sensitivity of physiological traits may buffer ectotherms from the consequences of DTFs. Species that experience varying degrees of DTFs in their environments may differ in their responses to thermally variable conditions, if thermal performance curves reflect environmental conditions.
View Article and Find Full Text PDFAnimals may overcome the challenges of temperature instability through behavioural and physiological mechanisms in response to short- and long-term temperature changes. When ectotherms face the challenge of large diel temperature fluctuations, one strategy may be to reduce the thermal sensitivity of key traits in order to maintain performance across the range of temperatures experienced. Additional stressors may limit the ability of animals to respond to these thermally challenging environments through changes to energy partitioning or interactive effects.
View Article and Find Full Text PDFThe severity, duration and amplitude of extreme weather events are forecast to intensify with current climate trends, over both long (e.g. seasonal) and short (e.
View Article and Find Full Text PDF