Front Sports Act Living
December 2024
The role women play in sport has been the subject of considerable discussion and research since the nineteen seventies. Much of this research has been descriptive or focused on the barriers, women face in advancing into a leadership role in a sporting organization. In an attempt to enrich the picture, women role models who occupy or have occupied leadership roles in sporting organizations were identified to gain their perspective, in their own words, on the challenges and requirements needed to be successful.
View Article and Find Full Text PDFCurrent understanding of soil carbon dynamics suggests that plant litter quality and soil mineralogy control the formation of mineral-associated soil organic carbon (SOC). Due to more efficient microbial anabolism, high-quality litter may produce more microbial residues for stabilisation on mineral surfaces. To test these fundamental concepts, we manipulate soil mineralogy using pristine minerals, characterise microbial communities and use stable isotopes to measure decomposition of low- and high-quality litter and mineral stabilisation of litter-C.
View Article and Find Full Text PDFPeatlands are globally important stores of soil carbon (C) formed over millennial timescales but are at risk of destabilization by human and climate disturbance. Pools are ubiquitous features of many peatlands and can contain very high concentrations of C mobilized in dissolved and particulate organic form and as the greenhouses gases carbon dioxide (CO ) and methane (CH ). The radiocarbon content ( C) of these aquatic C forms tells us whether pool C is generated by contemporary primary production or from destabilized C released from deep peat layers where it was previously stored for millennia.
View Article and Find Full Text PDFSci Total Environ
September 2023
Agroforestry practices, such as hedgerow planting, are widely encouraged for climate change mitigation and there is an urgent need to assess their contribution to national 'net-zero' targets. This study examined the impact that planting hedgerows at different rates could make to UK net-zero goals over the next 40 years, with a focus on 2050. We analysed the carbon (C) content of native hedgerow species and determined hedge aboveground biomass (AGB) C stock via destructive sampling of hedges of known ages.
View Article and Find Full Text PDFConventional arable cropping with annual crops established by ploughing and harrowing degrades larger soil aggregates that contribute to storing soil organic carbon (SOC). The urgent need to increase SOC content of arable soils to improve their functioning and sequester atmospheric CO has motivated studies into the effects of reintroducing leys into long-term conventional arable fields. However, effects of short-term leys on total SOC accumulation have been equivocal.
View Article and Find Full Text PDFRealising the carbon (C) sequestration capacity of agricultural soils is needed to reach Paris Climate Agreement goals; thus, quantifying hedgerow planting potential to offset anthropogenic CO emissions is crucial for accurate climate mitigation modelling. Although being a widespread habitat in England and throughout Europe, the potential of hedgerows to contribute to net-zero targets is unclear. This is the first study to quantify the soil organic carbon (SOC) sequestration rate associated with planting hedgerows.
View Article and Find Full Text PDFManaging soil to support biodiversity is important to sustain the ecosystem services provided by soils upon which society depends. There is increasing evidence that functional diversity of soil biota is important for ecosystem services, and has been degraded by intensive agriculture. Importantly, the spatial distribution of reservoirs of soil biota in and surrounding arable fields is poorly understood.
View Article and Find Full Text PDFEfforts to tackle diffuse water pollution from agriculture are increasingly focusing on improving farmers' awareness under the expectation that this would contribute to adoption of best management practices (BMPs) and, in turn, result in water quality improvements. To date, however, no study has explored the full awareness-behaviour-water quality pathway; with previous studies having mostly addressed the awareness-behaviour link relying on disciplinary approaches. Using an interdisciplinary approach, we investigate whether awareness-focussed approaches to mitigating diffuse water pollution from agriculture indeed result in water quality improvement, addressing the pathway in full.
View Article and Find Full Text PDFViruses and bacteria which are characterized by finite lives in the subsurface are rapidly transported via fractures and cavities in fractured and karst aquifers. Here, we demonstrate how the coupling of a robust outcrop characterization and hydrogeophysical borehole testing is essential for prediction of contaminant velocities and hence wellhead protection areas. To show this, we use the dolostones of the Permian Magnesian Limestone aquifer in NE England, where we incorporated such information in a groundwater flow and particle tracking model.
View Article and Find Full Text PDFGrasslands store about 34% of the global terrestrial carbon (C) and are vital for the provision of various ecosystem services such as forage and climate regulation. About 89% of this grassland C is stored in the soil and is affected by management activities but the effects of these management activities on C storage under different climate settings are not known. In this study, we synthesized the effects of fertilizer (nitrogen and phosphorus) application, liming and grazing regime on the stock of SOC in global grasslands, under different site specific climatic settings using a meta-analysis of 341 datasets.
View Article and Find Full Text PDFEffects of climate change on managed grassland carbon (C) fluxes and biomass production are not well understood. In this study, we investigated the individual and interactive effects of experimental warming (+3 °C above ambient summer daily range of 9-12 °C), supplemental precipitation (333 mm +15%) and drought (333 mm -23%) on plant biomass, microbial biomass C (MBC), net ecosystem exchange (NEE) and dissolved organic C (DOC) flux in soil cores from two upland grasslands of different soil nitrogen (N) status (0.54% and 0.
View Article and Find Full Text PDFNatural open-water pools are a common feature of northern peatlands and are known to be an important source of atmospheric methane (CH4). Pool environmental variables, particularly water chemistry, vegetation community and physical characteristics, have the potential to exert strong controls on carbon cycling in pools. A total of 66 peatland pools were studied across three regions of the UK (northern Scotland, south-west Scotland, and Northern Ireland).
View Article and Find Full Text PDFThere is concern that ecosystem services provided by blanket peatlands have come under threat due to increasing degradation. Blanket peatlands are subject to a wide range of drivers of degradation and are topographically variable. As a result, many degradation forms can develop, including those resulting from eroding artificial drainage, incising gullies and areas of bare peat.
View Article and Find Full Text PDFSci Total Environ
October 2008
Hydrologic transport of dissolved organic carbon (DOC) from peat soils may differ to organo-mineral soils in how they responded to changes in flow, because of differences in soil profile and hydrology. In well-drained organo-mineral soils, low flow is through the lower mineral layer where DOC is absorbed and high flow is through the upper organic layer where DOC is produced. DOC concentrations in streams draining organo-mineral soils typically increase with flow.
View Article and Find Full Text PDFMuch uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH.
View Article and Find Full Text PDFThe relationship between dissolved organic carbon (DOC) and the acidification of soils and freshwaters by sulfate (SO4(2-)) has been a topic of great debate over the last few decades. Most interest has focused on long-term acidification. Few have considered the influence of episodic drought-induced acidification in peatlands on DOC mobility, even through the increased acidity and ionic strength associated with the oxidation of reduced sulfur to SO4(2-) are known to reduce DOC solubility.
View Article and Find Full Text PDFMonthly stream water calcium and Gran alkalinity concentration data from 11 sub-catchments of the Nether Beck in the English Lake District have been used to appraise the transferability of the Scottish, River Dee-based G-BASH model. Readily available riparian zone geochemistry and flow paths were used initially to predict minimum and mean stream water concentrations at the Nether Beck, based on calibration equations from the River Dee catchment data. Predicted values significantly exceeded observed values.
View Article and Find Full Text PDFMonthly data for 11 moorland streams displaying marked seasonality and spatial variation in nitrate concentrations have been used with readily available catchment characteristics to develop a method for predicting stream water nitrate concentrations throughout an upland river network in the Lake District, UK. Over a 12-month period, a simple asymmetric truncated cosine function of day number is used to describe seasonality effects on stream water nitrate concentrations. This is then adjusted to compensate for differences in seasonality effects with catchment elevation.
View Article and Find Full Text PDF