Toll-like receptor (TLR)-7 agonists are immunostimulatory vaccine adjuvants. A systematic structure-activity relationship (SAR) study of TLR7-active 1-benzyl-2-butyl-1-imidazo[4,5-]quinolin-4-amine led to the identification of a potent hTLR7-specific -hydroxymethyl IMDQ with an EC value of 0.22 μM.
View Article and Find Full Text PDFStructure-based vaccine design (SBVD) is an important technique in computational vaccine design that uses structural information on a targeted protein to design novel vaccine candidates. This increasing ability to rapidly model structural information on proteins and antibodies has provided the scientific community with many new vaccine targets and novel opportunities for future vaccine discovery. This chapter provides a comprehensive overview of the status of in silico SBVD and discusses the current challenges and limitations.
View Article and Find Full Text PDFDrugs against novel targets are needed to treat COVID-19 patients, especially as SARS-CoV-2 is capable of rapid mutation. Structure-based de novo drug design and repurposing of drugs and natural products is a rational approach to discovering potentially effective therapies. These in silico simulations can quickly identify existing drugs with known safety profiles that can be repurposed for COVID-19 treatment.
View Article and Find Full Text PDFBackground: Multidrug-resistant (MDR) methicillin-resistant Staphylococcus aureus (MRSA) has become a prime health concern globally. These bacteria are found in hospital areas where they are regularly dealing with antibiotics. This brings many possibilities for its mutation, so drug resistance occurs.
View Article and Find Full Text PDFRepurposing of existing drugs is a rapid way to find potential new treatments for SARS-CoV-2. Here, we applied a virtual screening approach using Autodock Vina and molecular dynamic simulation in tandem to screen and calculate binding energies of repurposed drugs against the SARS-CoV-2 helicase protein (non-structural protein nsp13). Amongst the top hits from our study were antivirals, antihistamines, and antipsychotics, plus a range of other drugs.
View Article and Find Full Text PDFLipopeptides including diacylated PamCSK as well as triacylated PamCSK act as ligands of toll-like receptor (TLR)-2, a promising target for the development of vaccine adjuvants. The highly investigated PamCSK and PamCSK, despite their aqueous solubility have not performed well as vaccine adjuvants which may be attributable to potential denaturation of protein antigens by these cationic surfactant-like lipopeptides. In the present investigation, we synthesized (), () and racemic PamCS(OMe) analogs and their -acetyl derivatives without the tetralysine component to systematically investigate the effect of stereochemistry at the thio-glycerol lipopeptide core of these lipopeptide based TLR2 agonists.
View Article and Find Full Text PDFWe urgently need to identify drugs to treat patients suffering from COVID-19 infection. Drugs rarely act at single molecular targets. Off-target effects are responsible for undesirable side effects and beneficial synergy between targets for specific illnesses.
View Article and Find Full Text PDFBackground: Epithelial ovarian cancer remains one of the leading variants of gynecological cancer with a high mortality rate. Feasibility and technical competence for screening and detection of epithelial ovarian cancer remain a major obstacle and the development of point of care diagnostics (POCD) may offer a simple solution for monitoring its progression. Cathepsins have been implicated as biomarkers for cancer progression and metastasis; being a protease, it has an inherent tendency to interact with Cystatin C, a cysteine protease inhibitor.
View Article and Find Full Text PDFKnowledge in the fields of biochemistry, structural biology, immunological principles, microbiology, and genomics has all increased dramatically in recent years. There has also been tremendous growth in the fields of data science, informatics, and artificial intelligence needed to handle this immense data flow. At the intersection of wet lab and data science is the field of bioinformatics, which seeks to apply computational tools to better understanding of the biological sciences.
View Article and Find Full Text PDFUnlabelled: Repurposing of existing drugs and drug candidates is an ideal approach to identify new potential therapies for SARS-CoV-2 that can be tested without delay in human trials of infected patients. Here we applied a virtual screening approach using Autodock Vina and molecular dynamics simulation in tandem to calculate binding energies for repurposed drugs against the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). We thereby identified 80 promising compounds with potential activity against SARS-Cov2, consisting of a mixture of antiviral drugs, natural products and drugs with diverse modes of action.
View Article and Find Full Text PDFVaccines are key in charting a path out of the COVID-19 pandemic. However, development of new vaccines is highly dependent on availability of analytical methods for their design and evaluation. This paper highlights the challenges presented in having to rapidly develop vaccine analytical tools during an ongoing pandemic, including the need to address progressive virus mutation and adaptation which can render initial assays unreliable or redundant.
View Article and Find Full Text PDFThe development of a safe and effective vaccine is a key requirement to overcoming the COVID-19 pandemic. Recombinant proteins represent the most reliable and safe vaccine approach but generally require a suitable adjuvant for robust and durable immunity. We used the SARS-CoV-2 genomic sequence and in silico structural modelling to design a recombinant spike protein vaccine (Covax-19™).
View Article and Find Full Text PDFThe devastating impact of the COVID-19 pandemic caused by SARS-coronavirus 2 (SARS-CoV-2) has raised important questions about its origins and the mechanism of its transfer to humans. A further question was whether companion or commercial animals could act as SARS-CoV-2 vectors, with early data suggesting susceptibility is species specific. To better understand SARS-CoV-2 species susceptibility, we undertook an in silico structural homology modelling, protein-protein docking, and molecular dynamics simulation study of SARS-CoV-2 spike protein's ability to bind angiotensin converting enzyme 2 (ACE2) from relevant species.
View Article and Find Full Text PDFThe implementation of polysaccharide-based vaccines has massively reduced the incidence of invasive pneumococcal diseases. However, there is great concern regarding serotype replacement and the increase in antibiotic resistant strains expressing non-vaccine capsular types. In addition, conjugate vaccines have high production costs, a limiting factor for their implementation in mass immunization programs in developing countries.
View Article and Find Full Text PDFObjectives: Evaluation of the anti-Leishmanial activity of imidazoquinoline-based TLR7/8 agonists.
Methods: TLR7/8-active imidazoquinolines (2 and 3) were synthesized and assessed for activity against Leishmania amazonensis-intracellular amastigotes using mouse peritoneal macrophages. The production of reactive oxygen species (ROS), nitric oxide (NO) and cytokines was determined in infected and non-infected macrophages.
Toll-like receptors (TLRs) are the pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) in microbial species. Among the various TLRs, TLR2 has a special place due to its ability to sense the widest repertoire of PAMPs owing to its heterodimerization with either TLR1 or TLR6, broadening its ligand diversity against pathogens. Various scaffolds are reported to activate TLR2, which include naturally occurring lipoproteins, synthetic lipopeptides, and small heterocyclic molecules.
View Article and Find Full Text PDFHum Vaccin Immunother
August 2020
Better adjuvants are needed for vaccines against seasonal influenza. TLR7 agonists are potent activators of innate immune responses and thereby may be promising adjuvants. Among the imidazoquinoline compounds, 1-benzyl-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine (BBIQ) was reported to be a highly active TLR7 agonist but has remained relatively unexplored because of its commercial unavailability.
View Article and Find Full Text PDFThe unequivocal hypotheses about anticonvulsant activity of valproic acid (VPA) have always been a basic hurdle in designing next generation neurotherapeutics, particularly the anti-epileptic drugs. The present study reports about a comprehensive in-silico investigation into qualitative and quantitative binding of VPA and corresponding natural ligands of four major enzymes involved in neurotransmissions, namely-GABA transaminase (GABAt), α-keto glutarate dehydrogenase (α-KGDH), Succinate Semialdehyde dehydrogenase (SSADH) and Glutamate Decarboxylase (GAD), respectively. The molecular docking analyses revealed that VPA inhibits GABAt and α-KGDH through allosteric while SSADH through competitive mode of binding.
View Article and Find Full Text PDFThe structure-function correlation of membrane proteins have been a difficult task, particularly in context to transient protein complexes. The molecular simulation of ternary complex of Rab7::REP1::GGTase-II was carried out to understand the basic structural events occurring during the prenylation event of Rab proteins, using the software YASARA. The study suggested that the C-terminus of Rab7 has to be in completely extended conformation during prenylation to reach the active site of RabGGTase-II.
View Article and Find Full Text PDF