We study the time evolution of Ginibre matrices whose elements undergo Brownian motion. The non-Hermitian character of the Ginibre ensemble binds the dynamics of eigenvalues to the evolution of eigenvectors in a nontrivial way, leading to a system of coupled nonlinear equations resembling those for turbulent systems. We formulate a mathematical framework allowing simultaneous description of the flow of eigenvalues and eigenvectors, and we unravel a hidden dynamics as a function of a new complex variable, which in the standard description is treated as a regulator only.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2014
We study the diffusion of complex Wishart matrices and derive a partial differential equation governing the behavior of the associated averaged characteristic polynomial. In the limit of large-size matrices, the inverse Cole-Hopf transform of this polynomial obeys a nonlinear partial differential equation whose solutions exhibit shocks at the evolving edges of the eigenvalue spectrum. In a particular scenario one of those shocks hits the origin that plays the role of an impassable wall.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2013
We show that the derivative of the logarithm of the average characteristic polynomial of a diffusing Wishart matrix obeys an exact partial differential equation valid for an arbitrary value of N, the size of the matrix. In the large N limit, this equation generalizes the simple inviscid Burgers equation that has been obtained earlier for Hermitian or unitary matrices. The solution, through the method of characteristics, presents singularities that we relate to the precursors of shock formation in the Burgers equation.
View Article and Find Full Text PDF