The analysis of the electronic-structure changes along IRC paths for double-proton-transfer reactions in the formamide dimer (R1), formamide-thioformamide system (R2), and the thioformamide dimer (R3) was performed based on the extended-transition-state natural orbitals for chemical valence (ETS-NOCV) partitioning of the reaction force, considering the intra-fragments strain and the inter-fragments interaction terms, and further-the electrostatic, Pauli-repulsion and orbital interaction components, with the latter being decomposed into the NOCV components. Two methods of the system partitioning into the fragments were considered ('reactant perspective'/bond-formation, 'product perspective' / bond-breaking). In agreement with previous studies, the results indicate that the major changes in the electronic structure occur in the transition state region; the bond-breaking processes are, however, initiated already in the reactant region, prior to entering the TS region.
View Article and Find Full Text PDF