Publications by authors named "Piotr Surowka"

Article Synopsis
  • - This study explores a microscopic model of active particles in a fluid, focusing on "odd viscoelasticity," which is a unique behavior of these particles.
  • - The particles are designed as "odd dumbbells," featuring robotic devices that respond to torque in a specific way.
  • - The research provides a theoretical framework for understanding these odd effects, confirming findings through both analytical calculations and molecular dynamics simulations.
View Article and Find Full Text PDF

Odd viscoelastic materials are constrained by fewer symmetries than their even counterparts. The breaking of these symmetries allows these materials to exhibit different features, which have attracted considerable attention in recent years. Immersing a bead in such complex fluids allows for probing their physical properties, highlighting signatures of their oddity and exploring the consequences of these broken symmetries.

View Article and Find Full Text PDF

Stress-strain constitutive relations in solids with an internal angular degree of freedom can be modeled using Cosserat (also called micropolar) elasticity. In this paper, we explore Cosserat materials that include chiral active components and hence odd elasticity. We calculate static elastic properties and show that the static response to rotational stresses leads to strains that depend on both Cosserat and odd elasticity.

View Article and Find Full Text PDF

When a body moves through a fluid, it can experience a force orthogonal to its movement called lift force. Odd viscous fluids break parity and time-reversal symmetry, suggesting the existence of an odd lift force on tracer particles, even at vanishing Reynolds numbers and for symmetric geometries. It was previously found that an incompressible odd fluid cannot induce lift force on a tracer particle with no-slip boundary conditions, making signatures of odd viscosity in the two-dimensional bulk elusive.

View Article and Find Full Text PDF

Dipole-conserving fluids serve as examples of kinematically constrained systems that can be understood on the basis of symmetry. They are known to display various exotic features including glassylike dynamics, subdiffusive transport, and immobile excitations' dubbed fractons. Unfortunately, such systems have so far escaped a complete macroscopic formulation as viscous fluids.

View Article and Find Full Text PDF

Active chiral viscoelastic materials exhibit elastic responses perpendicular to the applied stresses, referred to as odd elasticity. We use a covariant formulation of viscoelasticity combined with an entropy production analysis to show that odd elasticity is not only present in active systems but also in broad classes of passive chiral viscoelastic fluids. In addition, we demonstrate that linear viscoelastic chiral solids require activity in order to manifest odd elastic responses.

View Article and Find Full Text PDF

SignificanceWeyl semimetals are a class of three-dimensional materials, whose low-energy excitations mimic massless fermions. In consequence they exhibit various unusual transport properties related to the presence of chiral anomalies, a subtle quantum phenomenon that denotes the breaking of the classical chiral symmetry by quantum fluctuations. In this work we present a universal description of transport in weakly disordered Weyl semimetals with several scattering mechanisms taken into account.

View Article and Find Full Text PDF

Magnetic oscillations of Dirac surface states of topological insulators are typically expected to be associated with the formation of Landau levels or the Aharonov-Bohm effect. We instead study the conductance of Dirac surface states subjected to an in-plane magnetic field in the presence of a barrier potential. Strikingly, we find that, in the case of large barrier potentials, the surface states exhibit pronounced oscillations in the conductance when varying the magnetic field, in the absence of Landau levels or the Aharonov-Bohm effect.

View Article and Find Full Text PDF

The mechanical response of active media ranging from biological gels to living tissues is governed by a subtle interplay between viscosity and elasticity. We generalize the canonical Kelvin-Voigt and Maxwell models to active viscoelastic media that break both parity and time-reversal symmetries. The resulting continuum theories exhibit viscous and elastic tensors that are both antisymmetric, or odd, under exchange of pairs of indices.

View Article and Find Full Text PDF

Harmonic generation is a general characteristic of driven nonlinear systems, and serves as an efficient tool for investigating the fundamental principles that govern the ultrafast nonlinear dynamics. Here, we report on terahertz-field driven high-harmonic generation in the three-dimensional Dirac semimetal CdAs at room temperature. Excited by linearly-polarized multi-cycle terahertz pulses, the third-, fifth-, and seventh-order harmonic generation is very efficient and detected via time-resolved spectroscopic techniques.

View Article and Find Full Text PDF

Parity-violating fluids in two spatial dimensions can appear in a variety of contexts such as liquid crystal films, anyon fluids, and quantum Hall fluids. Nonetheless, the consequences of parity violation on the solutions to the equations of motion are largely unexplored. In this paper, we explore phenomenological consequences of parity violation through simple, illustrative examples.

View Article and Find Full Text PDF

We consider the hydrodynamic regime of theories with quantum anomalies for global currents. We show that a hitherto discarded term in the conserved current is not only allowed by symmetries, but is in fact required by triangle anomalies and the second law of thermodynamics. This term leads to a number of new effects, one of which is chiral separation in a rotating fluid at nonzero chemical potential.

View Article and Find Full Text PDF

Prior attempts to construct the gravity dual of boost-invariant flow of N=4 supersymmetric Yang-Mills gauge theory plasma suffered from apparent curvature singularities in the late-time expansion. This Letter shows how these problems can be resolved by a different choice of expansion parameter. The calculations presented correctly reproduce the plasma energy-momentum tensor within the framework of second-order viscous hydrodynamics.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: