Chitosan (CS) has a natural origin and is a biodegradable and biocompatible polymer with many skin-beneficial properties successfully used in the cosmetics and pharmaceutical industry. CS derivatives, especially those synthesized via a Schiff base reaction, are very important due to their unique antimicrobial activity. This study demonstrates research results on the use of hydrogel microspheres made of [chitosan--poly(ε-caprolactone)]--(ĸ-carrageenan)], [chitosan-2-pyridinecarboxaldehyde--poly(ε-caprolactone)]--(ĸ-carrageenan), and chitosan-sodium-4-formylbenzene-1,3-disulfonate--poly(ε-caprolactone)]--(ĸ-carrageenan) as innovative vitamin carriers for cosmetic formulation.
View Article and Find Full Text PDFPharmaceuticals (Basel)
April 2024
The United Nations World Drug Report published in 2022 alarmed that the global market of illicit drugs is steadily expanding in space and scale. Substances of abuse are usually perceived in the light of threats to human health and public security, while the environmental aspects of their use and subsequent emissions usually remain less explored. However, as with other human activities, drug production, trade, and consumption of drugs may leave their environmental mark.
View Article and Find Full Text PDFThe aim of this work is research dedicated to the search for new bactericidal systems for use in cosmetic formulations, dermocosmetics, or the production of wound dressings. Over the last two decades, chitosan, due to its special biological activity, has become a highly indispensable biopolymer with very wide application possibilities. Reports in the literature on the antibacterial effects of chitosan are very diverse, but our research has shown that they can be successfully improved through chemical modification.
View Article and Find Full Text PDFThe work presents the synthesis of a series of linear polyamidoamines by polycondensation of sebacoyl dichloride with endogenous polyamines: putrescine, spermidine, spermine, and norspermidine-a biogenic polyamine not found in the human body. During the synthesis carried out via interfacial reaction, hydrophilic, semi-crystalline polymers with an average viscosity molecular weight of approximately 20,000 g/mol and a melting point of approx. 130 °C were obtained.
View Article and Find Full Text PDFBlends of poly(lactic acid) (PLA) with poly(propylene carbonate) (PPC) are currently in the phase of intensive study due to their promising properties and environmentally friendly features. Intensive study and further commercialization of PPC-based polymers or their blends, as usual, will soon face the problem of their waste occurring in the environment, including soil. For this reason, it is worth comprehensively studying the degradation rate of these polymers over a long period of time in soil and, for comparison, in phosphate buffer to understand the difference in this process and evaluate the potential application of such materials toward agrochemical and agricultural purposes.
View Article and Find Full Text PDFAntibiotic resistance is one of the greatest threats to global health and food security today. It becomes increasingly difficult to treat infectious disorders because antibiotics, even the newest ones, are becoming less and less effective. One of the ways taken in the Global Plan of Action announced at the World Health Assembly in May 2015 is to ensure the prevention and treatment of infectious diseases.
View Article and Find Full Text PDFOur research sought to determine the molecular and biochemical effects of environmentally relevant exposure to commonly used chloro-s-triazine herbicide terbuthylazine and organophosphate insecticide malathion on zebrafish. To this aim, mature zebrafish were exposed to 2 and 30 µg L terbuthylazine and 5 and 50 µg L malathion alone and in combination for 14 days. Aside from the accumulation of TBARS and protein carbonyls, a decrease in antioxidants and succinate dehydrogenase activity, an increase in oxidized glutathione, and enhanced apoptosis via Caspase-3 and BAX overexpression were observed.
View Article and Find Full Text PDFPesticides are well known for their high levels of persistence and ubiquity in the environment, and because of their capacity to bioaccumulate and disrupt the food chain, they pose a risk to animals and humans. With a focus on organophosphate and triazine pesticides, the present review aims to describe the current state of knowledge regarding spatial distribution, bioaccumulation, and mode of action of frequently used pesticides. We discuss the processes by which pesticides and their active residues are accumulated and bioconcentrated in fish, as well as the toxic mechanisms involved, including biological redox activity, immunotoxicity, neuroendocrine disorders, and cytotoxicity, which is manifested in oxidative stress, lysosomal and mitochondrial damage, inflammation, and apoptosis/autophagy.
View Article and Find Full Text PDFThe aim of the study is an ecotoxicological assessment of magnetite iron oxide-based nanoparticles (NPs), which have risen in popularity in the last decade, on selected terrestrial and aquatic organisms from various levels of the food chain. In the presented study various organisms, from both the terrestrial and aquatic environment, were used as targets for the assessment of NPs ecotoxicity. Plants (radish, oat), marine bacteria (A.
View Article and Find Full Text PDFPackaging for fresh fruits and vegetables with additional properties such as inhibition of pathogens grown can reduce food waste. With its biodegradability, poly(ε-caprolactone) (PCL) is a good candidate for packaging material, especially in the form of an electrospun membrane. The preparation of nonwoven fabric of PCL loaded with food additive, antimicrobial nisin makes them an active packaging with antispoilage properties.
View Article and Find Full Text PDFPurpose: The aim of the present study was to evaluate the toxicity and biodegradation potential of oil hydrocarbons contaminated soil samples obtained from different depths at an oil refinery station area. An approach involving chemical, microbiological, respirometry and ecotoxicity assessment of soil polluted by oil hydrocarbons was adopted, in order to determine the biodegradability of pollutants and ecotoxicological effects of natural attenuation strategy.
Methods: The ecotoxicity of soil samples was evaluated using an ostracod test kit and a seed germination test.
This work presents the results of research on the preparation of bioresorbable functional polyestercarbonates containing side carboxyl groups. These copolymers were synthesized in two ways: the classic two-step process involving the copolymerization of l-lactide and a cyclic carbonate containing a blocked side carboxylate group in the form of a benzyl ester (MTC-Bz) and its subsequent deprotection, and a new way involving the one-step copolymerization of l-lactide with this same carbonate, but containing an unprotected carboxyl group (MTC-COOH). Both reactions were carried out under identical conditions in the melt, using a specially selected zinc chelate complex, with Zn[(acac)(L)HO] (where: L--(pyridin-4-ylmethylene) phenylalaninate ligand) as an initiator.
View Article and Find Full Text PDFIn modern society, it is impossible to imagine life without polymeric materials. However, managing the waste composed of these materials is one of the most significant environmental issues confronting us in the present day. Recycling polymeric waste is the most important action currently available to reduce environmental impacts worldwide and is one of the most dynamic areas in industry today.
View Article and Find Full Text PDFThe paper presents a synthesis of poly(l-lactide) with bacteriostatic properties. This polymer was obtained by ring-opening polymerization of the lactide initiated by selected low-toxic zinc complexes, Zn[(acac)(L)HO], where L represents N-(pyridin-4-ylmethylene) tryptophan or N-(2-pyridin-4-ylethylidene) phenylalanine. These complexes were obtained by reaction of Zn[(acac) HO] and Schiff bases, the products of the condensation of amino acids and 4-pyridinecarboxaldehyde.
View Article and Find Full Text PDFThe present study aimed to develop and prepare new polymer/herbicide formulations for their potential application in environment-friendly, controlled release systems of agrochemicals. Selected biodegradable polymers, including L-Lactide/Glycolide/PEG/Terpolymer (PLAGA-PEG-PLAGA) as well as oligosaccharide-based polymers and their blend with terpolymer, were used to prepare microspheres loaded with two soil-applied herbicides. The degradation process of the obtained polymeric microspheres was evaluated based on (1) their weight loss and surface erosion and (2) the release rate of loaded metazachlor and pendimethalin.
View Article and Find Full Text PDFIn this paper, comparison of ecotoxicological and herbicidal effect of newly synthesized N‑[(phosphono)(aryl)methyl]glycines 1a-g (C-substituted glyphosate derivatives) with pure glyphosate (N-phosphonomethylglycine) (2) was demonstrated. All of tested glyphosate derivatives (1a-g) in contrast to glyphosate, were found to be completely safe for oat (Avena sativa) and classified as not harmful for marine bacteria Aliivibrio fischeri. Compounds 1a-g were also found rather harmless to radish (Raphanus sativus) as compared to N-phosphonomethylglycine, but they were moderately toxic against freshwater crustaceans Heterocypris incongruens.
View Article and Find Full Text PDFThe presented work aimed to test influence of poly(L-lactide-co-glycolide)-block-poly (ethylene oxide) copolymer modification by blending with grafted dextrin or maltodextrin on the course of degradation in soil and the usefulness of such material as a matrix in the controlled release of herbicides. The modification should be to obtain homogenous blends with better susceptibility to enzymatic degradation. Among all tested blends, which were proposed as a carrier for potential use in the controlled release of plant protection agents, PLGA-block-PEG copolymer blended with grafted dextrin yielded very promising results for their future applications, and what is very importantly proposed formulations provide herbicides in unchanged form into soil within few months of release.
View Article and Find Full Text PDFJ Environ Sci Health B
November 2019
Although there are many reports on the dangers posed by glyphosate, this herbicide is still one of the most popular and widely used total weed killers. Therefore, great effort should be made to minimize exposure to this herbicide and limit its losses into the environment. The aim of this study was to prepare a new formulation consisted of various molecular weight chitosans with glyphosate and their evaluation toward active substance release, phytotoxicity, and preliminary herbicidal efficiency.
View Article and Find Full Text PDFThe aim of this work was to evaluate the impact of the thiophene-derived aminophosphonates - on seedling emergence and growth of monocotyledonous oat () and dicotyledonous radish ( L.), and phytotoxicity against three persistent and resistant weeds ( Cav., L.
View Article and Find Full Text PDFPoly(2-oxazoline) polymers have found extensive application in the preparation of microcapsules for biomedical purposes. However, there is a scarcity of information related to their ecotoxicological assessment. Therefore, in this study, we focused on the ecotoxicity of selected polyethylenimines (PEIs) including poly(2-ethyl-2-oxazoline) (PEtOx) as an N-acyl-substituted PEI, linear polyethylenimine (LPEI) and branched polyethylenimine (BPEI).
View Article and Find Full Text PDFThis paper discusses the impact of two nitrofuran-derived drugs, namely furazolidone and nitrofurantoin on growth of oat and common radish as well as their impact on bacteria Allivibrio fischeri and crustaceans Heterocypris incongruens. Results indicated that both compounds were highly phytotoxic for radish (R. sativus) being simultaneously nearly not harmful for oat (A.
View Article and Find Full Text PDFThe aim of this work was to evaluate phytotoxicity of the thiophene derivatives against three persistent weeds of a high degree of resistance ( Cav. L., and ) as well as their ecotoxicological impact on .
View Article and Find Full Text PDFSince aminophosphonate-based herbicides like glyphosate are currently one of the most popular and widely applied active agent in agrochemistry, there is an urgent need for searching new compounds among this family with potential herbicidal activity, but exhibiting low toxicity against surrounding environment. Six new (5-nitrofurfuryl)-derived aminophosphonates were synthesized for the first time and apart from the only one example of N-benzylamino(5-nitrofuryl)-methylphosphonic acid, it was the first time in the history, when this class of compounds was prepared. Their prospective and real biological properties have been followed up by evaluation of their preliminary ecotoxicology.
View Article and Find Full Text PDFA wide range of biological activities of aminophosphonates predisposes them to find applications as anticancer, antiviral, antimicrobial, antifungal, or herbicidal agents. Despite a number of positive aspects of the use of aminophosphonates, their applications may cause a risk to the environment, which is well exemplified by the case of glyphosate. Therefore, scientists see a pressing need to rate ecotoxicity of aminophosphonates.
View Article and Find Full Text PDFSix new dimethyl N-arylamino(2-pyrrolyl)methylphosphonates 2a-f were synthesized by the modified aza-Pudovik reaction. Their ecotoxicological impact using battery of bioassay was assessed using Microtox and Ostracodtoxit tests as well as phytotoxicity towards two plants, dicotyledonous radish (Raphanus sativus) and monocotyledonous oat (Avena sativa) following the OECD 208 Guideline. Ecotoxicological properties of compounds 2a-f in aspect of acute and chronic toxicity were evaluated using Heterocypris incongruens and Aliivibrio fisheri tests.
View Article and Find Full Text PDF