Publications by authors named "Piotr Podziemski"

Background: The entrainment response, defined as the difference between the postpacing interval and the tachycardia cycle length (TCL) recorded from a mapping catheter, allows to track down the components of the tachycardia loop.

Objectives: The aim of this study was to evaluate if the postpacing interval measured simultaneously from multiple sites that are remote from the pacing site (PPIR) could be clinically useful in mapping re-entrant circuits.

Methods: Ninety-two episodes of entrainment response in 29 patients with different macro-re-entrant tachycardias were evaluated using a standardized entrainment protocol.

View Article and Find Full Text PDF

Aims: Complex propagation patterns are observed in patients and models with stable atrial fibrillation (AF). The degree of this complexity is associated with AF stability. Experimental work suggests reduced wavefront turning as an important mechanism for widening of the excitable gap.

View Article and Find Full Text PDF

Background: Several recent studies suggest rotors detected by phase mapping may act as main drivers of persistent atrial fibrillation. However, the electrophysiological nature of detected rotors remains unclear. We performed a direct, 1:1 comparison between phase and activation time mapping in high-density, epicardial, direct-contact mapping files of human atrial fibrillation.

View Article and Find Full Text PDF

Electro-anatomical mapping of the atria is used to identify the substrate of atrial fibrillation (AF). Targeting this substrate by ablation in addition to pulmonary vein ablation did not consistently improve outcome in clinical trials. Generally, the assessment of the substrate is based on short recordings (≤10 s, often even shorter).

View Article and Find Full Text PDF

Objective: To explore technical challenges of phase singularity (PS) mapping during atrial fibrillation (AF) using direct contact electrograms.

Methods: AF mapping was performed in high-density epicardial recordings of human paroxysmal (PAF) or persistent (PersAF) (N = 20 pts) AF with an array of 16 × 16 electrodes placed on atrial epicardium. PS points were detected using subsets of electrodes forming rings of varying sizes.

View Article and Find Full Text PDF

Unipolar electrogram can detect local as well as remote electrical activity of the heart. Information on how the amplitude and morphology of the recorded signal changes with the distance from the source tissue undergoing depolarization can help to better understand unipolar electrograms fractionation and provide insights into the passive conduction properties of the atrial tissue. Ten second unipolar atrial fibrillation (AF) electrograms were recorded using high-density electrode array from the posterior left atrium (LA) and right atrium (RA) of 19 (8 persistent - PERS & 11 paroxysmal - PAF) AF patients undergoing cardiac surgery.

View Article and Find Full Text PDF

Current gold-standard algorithms for heart beat detection do not work properly in the case of high noise levels and do not make use of multichannel data collected by modern patient monitors. The main idea behind the method presented in this paper is to detect the most prominent part of the QRS complex, i.e.

View Article and Find Full Text PDF

Background: The difference between the postpacing interval (PPI) and the tachycardia cycle length (TCL; PPI-TCL) is a useful tool in mapping macro-reentrant tachycardias. However, entrainment pacing causes some perturbation of the conduction velocity within the tachycardia circuit, which may affect the repeatability and consequently the accuracy of the measurement of PPI-TCL. The aim of this study was to assess PPI-TCL repeatability both in vivo and in silico.

View Article and Find Full Text PDF

Existing atrial models with detailed anatomical structure and multi-variable cardiac transmembrane current models are too complex to allow to combine an investigation of long time dycal properties of the heart rhythm with the ability to effectively simulate cardiac electrical activity during arrhythmia. Other ways of modeling need to be investigated. Moreover, many state-of-the-art models of the right atrium do not include an atrioventricular node (AVN) and only rarely--the sinoatrial node (SAN).

View Article and Find Full Text PDF