Sensitive mapping of drugs and drug delivery systems is pivotal for the understanding and improvement of treatment options. Since labeling alters the physicochemical and potentially the pharmacological properties of the molecule of interest, its label-free detection by photothermal expansion is investigated. We report on a proof-of-concept study to map the cetuximab distribution by atomic-force microscopy-based infrared spectroscopy (AFM-IR).
View Article and Find Full Text PDFA synthetic route for oxidation-sensitive core-multishell (osCMS) nanocarriers was established, and their drug loading and release properties were analyzed based on their structural variations. The nanocarriers showed a drug loading of 0.3-3 wt % for the anti-inflammatory drugs rapamycin and dexamethasone and the photosensitizer -tetra-hydroxyphenyl-porphyrin (THPP).
View Article and Find Full Text PDFQuasi-one-dimensional (quasi-1D) materials enjoy growing interest due to their unusual physical properties and promise for miniature electronic devices. However, the mechanical exfoliation of quasi-1D materials into thin flakes and nanoribbons received considerably less attention from researchers than the exfoliation of conventional layered crystals. In this study, we investigated the micromechanical exfoliation of representative quasi-1D crystals, TiS whiskers, and demonstrate that they typically split into narrow nanoribbons with very smooth, straight edges and clear signatures of 1D TiS chains.
View Article and Find Full Text PDFA main challenge in understanding the structure of a cell membrane and its interactions with drugs is the ability to chemically study the different molecular species on the nanoscale. We have achieved this for a model system consisting of mixed monolayers (MLs) of the biologically relevant phospholipid 1,2-distearoyl--glycero-phosphatidylcholine and the antibiotic surfactin. By employing nano-infrared (IR) microscopy and spectroscopy in combination with atomic force microscopy imaging, it was possible to identify and chemically detect domain formation of the two constituents as well as to obtain IR spectra of these species with a spatial resolution on the nanoscale.
View Article and Find Full Text PDFSynchrotron radiation-based nano-FTIR spectroscopy utilizes the highly brilliant and ultra-broadband infrared (IR) radiation provided by electron storage rings for the infrared spectroscopic characterization of samples at the nanoscale. In order to exploit the full potential of this approach we investigated the influence of the properties of the radiation source, such as the electron bunch shape and spectral bandwidth of the emitted radiation, on near-field infrared spectra of silicon-carbide (SiC). The adapted configuration of the storage ring optics enables a modification of the transverse electron bunch profile allowing an increase of the measured near-field signal amplitude.
View Article and Find Full Text PDFThis publisher's note amends the Acknowledgments of a recent publication [Opt. Express24, 1154 (2016)10.1364/OE.
View Article and Find Full Text PDFNanoscale plasmonic phenomena observed in single and bi-layers of molybdenum disulfide (MoS(2)) on silicon dioxide (SiO(2)) are reported. A scattering type scanning near-field optical microscope (s-SNOM) with a broadband synchrotron radiation (SR) infrared source was used. We also present complementary optical mapping using tunable CO(2)-laser radiation.
View Article and Find Full Text PDFWe describe the application of scattering-type near-field optical microscopy to characterize various semiconducting materials using the electron storage ring Metrology Light Source (MLS) as a broadband synchrotron radiation source. For verifying high-resolution imaging and nano-FTIR spectroscopy we performed scans across nanoscale Si-based surface structures. The obtained results demonstrate that a spatial resolution below 40 nm can be achieved, despite the use of a radiation source with an extremely broad emission spectrum.
View Article and Find Full Text PDFWe demonstrate scanning near-field optical microscopy with a spatial resolution below 100 nm by using low intensity broadband synchrotron radiation in the IR regime. The use of such a broadband radiation source opens up the possibility to perform nano-Fourier-transform infrared spectroscopy over a wide spectral range.
View Article and Find Full Text PDFThe influence of surface plasmons on the magneto-optic activity in a two-dimensional hexagonal array is addressed. The experiments were performed using hexagonal array of circular holes in a ferromagnetic Ni film. Well pronounced troughs are observed in the optical reflectivity, resulting from the presence of surface plasmons.
View Article and Find Full Text PDFThe transmission of light through a metallic film stack on a transparent substrate, perforated with a periodic array of cylindrical holes/nanocavities, is studied. The structure is fabricated by using self-assembled nanosphere lithography. Since one layer in the film stack is made of a ferromagnetic metal (iron), exposure of the structure to a solution containing iron oxide nanoparticles causes nanoparticle accumulation inside the nanocavities.
View Article and Find Full Text PDFFabrication of tailored nanomaterials with desired structure and properties is the greatest challenge of modern nanotechnology. Herein, we describe a wet chemical method for the preparation of large area metal nanoring arrays. This method is based on self-assembly of polystyrene sphere template on a flat substrate and wicking/reducing metal precursor into the interstices between the template and the substrate.
View Article and Find Full Text PDFA fast and cheap, large-area (>1 cm(2)), high-coverage fabrication technique for periodic metallic split-ring resonator metamaterials is presented, which allows control of inner- and outer-ring diameters, gap angles, as well as thickness and periodicity. This method, based on shadow nanosphere lithography, uses tilted-angle-rotation thermal evaporation onto Langmuir-Blodgett-type monolayers of close-packed polystyrene nanospheres. Excellent agreement of the process parameters with a simplified model is demonstrated.
View Article and Find Full Text PDF