The presented paper proposes a hybrid neural architecture that enables intelligent data analysis efficacy to be boosted in smart sensor devices, which are typically resource-constrained and application-specific. The postulated concept integrates prior knowledge with learning from examples, thus allowing sensor devices to be used for the successful execution of machine learning even when the volume of training data is highly limited, using compact underlying hardware. The proposed architecture comprises two interacting functional modules arranged in a homogeneous, multiple-layer architecture.
View Article and Find Full Text PDFThis paper presents a novel method for tomographic measurement and data analysis based on crowdsourcing. X-ray radiography imaging was initially applied to determine silo flow parameters. We used traced particles immersed in the bulk to investigate gravitational silo flow.
View Article and Find Full Text PDF