Publications by authors named "Piotr Komorowski"

The aim of this study was to show that virtual surgical planning (VSP) and printed anatomical models support the reconstruction of the center of rotation (COR) and pelvic BRIM during revision hip surgery using a dual-mobility revision cup system in patients with anterior pelvic column damage and soft tissue envelope deficiency. Patients with anterior pelvic column damage and soft tissue envelope deficiency underwent revision hip arthroplasty. Virtual planning included assessment of bone segmentation, positioning of the cementless revision cup while maintaining the COR, and the assumed inclination and anteversion angles.

View Article and Find Full Text PDF

The laser surface modification of metallic implants presents a promising alternative to other surface modification techniques. A total of four alloyed metallic biomaterials were used for this study: medical steel (AISI 316L), cobalt-chromium-molybdenum alloy (CoCrMo) and titanium alloys (Ti6Al4V and Ti6Al7Nb). Samples of metallic biomaterials after machining were subjected to polishing or laser modification in two different versions.

View Article and Find Full Text PDF

Background: In revision hip arthroplasty (RHA), establishing the center of rotation (COR) can be technically challenging due to the acetabular bone destruction that is usually present, particularly in severe cases such as Paprosky type II and III defects. The aim of this study was to demonstrate the use of open-source medical image reconstruction software and low-cost 3D anatomical models in pre-surgical planning of RHA.

Methods: A total of 10 patients, underwent RHA and were included in the study.

View Article and Find Full Text PDF

Civilization diseases, cancer, frequent mutations of viruses and other pathogens constitute the need to look for new drugs, as well as systems for their targeted delivery. One of the promising way of using drugs is supplying them by linking to nanostructures. One of the solution for the development of nanobiomedicine are metallic nanoparticles stabilized with various polymer structures.

View Article and Find Full Text PDF

The aim of this study was to evaluate the quantitative and qualitative changes in the proteome of the hemolymph of female Steatoda grossa spiders (Theridiidae) that were chronically exposed to cadmium and copper in food and were additionally immunostimulated (phorbol 12-myristate 13-acetate (PMA); bacterial suspensions: Staphylococcus aureus (G+), Pseudomonas fluorescens (G-). It was found that the expression of nearly 90 proteins was altered in cadmium-intoxicated spiders and more than 60 in copper-exposed individuals. Regardless of the type of metal used, these proteins were mainly overexpressed in the hemolymph of the exposed spiders.

View Article and Find Full Text PDF

The aim of this study is to assess the effect of PAMAM dendrimers of second, fourth, and seventh generations on human umbilical vein endothelial cells. Primary endothelial cells were exposed to PAMAM dendrimers for 24 h, using concentrations reducing cellular viability to the levels of 90, 75, and 50%. We assumed, that changes in mechanical properties reflect toxicity of PAMAM dendrimers.

View Article and Find Full Text PDF

Diclofenac belongs to the class of nonsteroidal anti-inflammatory drugs (NSAIDs), which are amongst the most frequently prescribed drugs to treat fever, pain and inflammation. Despite the presence of NSAIDs on the pharmaceutical market for several decades, epidemiological studies have shown new clinical applications of NSAIDs, and new mechanisms of their action were discovered. The unfolded protein response (UPR) activated under endoplasmic reticulum (ER) stress is involved in the pathophysiology of many diseases and may become a drug target, therefore, the study evaluated the effects of diclofenac on the tunicamycin-induced UPR pathways in endothelial cells.

View Article and Find Full Text PDF

Cationic dendrimers are effective carriers for the delivery of siRNA into cells; they can penetrate cell membranes and protect nucleic acids against RNase degradation. Two types of dendrimers (CBD-1 and CBD-2) and their complexes with pro-apoptotic siRNA (Mcl-1 and Bcl-2) were tested on MCF-7 cells cultured as spheroids. Cytotoxicity of dendrimers and dendriplexes was measured using the live-dead test and Annexin V-FITC Apoptosis Detection Kit (flow cytometry).

View Article and Find Full Text PDF

Many central nervous system (CNS) diseases, including major depressive disorder (MDD), are underpinned by the unfolded protein response (UPR) activated under endoplasmic reticulum (ER) stress. New, more efficient, therapeutic options for MDD are needed to avoid adverse effects and drug resistance. Therefore, the aim of the work was to determine whether UPR signalling pathway activation in astrocytes may serve as a novel target for antidepressant drugs.

View Article and Find Full Text PDF

Understanding of biology of osteosarcoma malignant progression is indispensable for enhancement of conventional chemotherapy by the use of silver nanoparticles (AgNPs). We presented an in vitro model of cancer progression closely resembling processes occurring in vivo in terms of protein profile. A comparison of cytotoxic and genotoxic potential of AgNPs in Saos-2 cells in early stages of cancerous progression (early passages) with the cells in advanced stages (late passages) demonstrated significantly reduced responsiveness of the late passage cells to nanoparticles toxicity.

View Article and Find Full Text PDF

Research Background: Cellulose is an ingredient of waste materials that can be converted to other valuable substances. This is possible provided that the polymer molecule is degraded to smaller particles and used as a carbon source by microorganisms. Because of the frequently applied methods of pretreatment of lignocellulosic materials, the cellulases derived from thermophilic microorganisms are particularly desirable.

View Article and Find Full Text PDF

The application of siRNA in gene therapy is mainly limited because of the problems with its transport into cells. Utilization of cationic dendrimers as siRNA carriers seems to be a promising solution in overcoming these issues, due to their positive charge and ability to penetrate cell membranes. The following two types of carbosilane dendrimers were examined: CBD-1 and CBD-2.

View Article and Find Full Text PDF

The study of the impact of nanomaterials on endothelial cell elasticity with the atomic force spectroscopy (AFS) can be a significant model for assessing nanomaterials toxic effects in vitro. The mechanical properties of cells exposed to nanostructures can provide information not only about cellular nano and micro-structure, but also about cell physiology. The toxicity of nanostructures is an important issue which must be carefully considered when the optimal nanomaterial is defined.

View Article and Find Full Text PDF

Biological acceptance is one of the most important aspects of a biomaterial and forms the basis for its clinical use. The aim of this study was a comprehensive biological evaluation (cytotoxicity test, bacterial colonization test, blood platelets adhesion test and transcriptome and proteome analysis of Saos-2 cells after contact with surface of the biomaterial) of biomaterials used in spinal and orthopedic surgery, namely, Ti6Al4V ELI (Extra Low Interstitials), its modified version obtained as a result of melting by electron beam technology (Ti6Al4V ELI-EBT), polyether ether ketone (PEEK) and polished medical steel American Iron and Steel Institute (AISI) 316L (the reference material). Biological tests were carried out using the osteoblasts-like cells (Saos-2, ATCC HTB-85) and bacteria (DH5α).

View Article and Find Full Text PDF

Cell cultures are very important for testing materials and drugs, and in the examination of cell biology and special cell mechanisms. The most popular models of cell culture are two-dimensional (2D) as monolayers, but this does not mimic the natural cell environment. Cells are mostly deprived of cell-cell and cell-extracellular matrix interactions.

View Article and Find Full Text PDF

Endothelial cell aging is related to changes not only in cell phenotype, such as luminal changes, intimal and medial thickening, and increased vascular stiffness, but encompasses different cell responses to various substances including drugs or nanomaterials. In the present work, time- and dose-dependent elasticity changes evoked by silver nanoparticles in endothelial cells in early (below 15) passages were analyzed. Silver nanoparticle concentrations of 3, 3.

View Article and Find Full Text PDF

The hybrid technology combines an efficient material-removal process and implant surface treatment by the laser reducing time of manufacture process compared to currently used machining technologies. It also permits precise structuring of the implant material surface. Six structures of the Ti6Al4V ELI surface were designed and studied how the structure topography prepared with the hybrid technology affected the Escherichia coli adhesion to the surface and viability, as well as the growth, adhesion, and viability of human osteogenic Saos-2 cells cultured on the investigated surfaces.

View Article and Find Full Text PDF

Diamond-like carbon (DLC) coatings are well known as protective coatings for biomedical applications. Furthermore, the incorporation of different elements, such as silicon (Si), in the carbon matrix changes the bio-functionality of the DLC coatings. This has also been proven by the results obtained in this work.

View Article and Find Full Text PDF

Today, the extensive and constantly growing number of applications in the field of nanotechnology poses a lot of questions about the potential toxicity of nanomaterials (NMs) toward cells of different origins. In our work we employed the tools of molecular biology to evaluate changes that occur in human endothelial cells at the transcriptomic and proteomic level, following 24 h of exposure to three different classes of NMs. Using microarray technology, we demonstrated that 24 h of exposure to silver nanoparticles (SNPs), multiwalled carbon nanotubes (MWCNTs) and polyamidoamine dendrimers (PAMAMs) leads to changes in 299, 1271, and 431 genes, respectively, influencing specific molecular pathways.

View Article and Find Full Text PDF

Endothelial cells, due to their location, are interesting objects for atomic force spectroscopy study. They constitute a barrier between blood and vessel tissues located deeper, and therefore they are the first line of contact with various substances present in blood, eg, drugs or nanoparticles. This work intends to verify whether the mechanical response of immortalized human umbilical vein endothelial cells (EA.

View Article and Find Full Text PDF

Nematode Caenorhabditis elegans (C. elegans) was used to investigate the impact of silver nanoparticles (SNP), multiwalled carbon nanotubes (MWCNT), and polyamidoamine dendrimers (PAMAM) used in concentration of 10 particle/mL. Population-based observations and gene expression analysis were employed in this study.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) constitutes a distinctive and tightly regulated interface between the brain and the peripheral circulation. The objective of studies was to compare responses of human endothelial cells representing the model of blood vessels - EA.hy926 and HUVEC cells and the model of the brain endothelial barrier - HBEC5i cells to silver nanoparticles (SNPs).

View Article and Find Full Text PDF

Objective: This study aimed to present a new possibility to create radio-opaque implant material for craniomaxillofacial reconstruction.

Materials And Methods: The test disks made of the own compound of polyethylenes with addiction of 2, 4, and 6 % of weight TiO was investigated for cytotoxicity [each group 15 disks respectively]. Next, computed tomography of the disks was performed in environment of muscle and fat.

View Article and Find Full Text PDF

Since the biological response of the body towards an implanted material is mainly governed by its surface properties, biomaterials are improved by various kinds of coatings. Their role is to provide good mechanical and biological characteristics, and exclude some disadvantages like post-implantation infections. This phenomenon may be reduced by introduction of silver as an antibacterial agent.

View Article and Find Full Text PDF

Most biomaterials at present have sufficient mechanical properties; however compliance with standards for biocompatibility is often not sufficient in clinical practice. This may be due to the complexity of biological systems in general and the diversity of individual responses to these materials by implant recipients. Significant improvement of biocompatibility must involve surface modification of implants, which in the future will make it possible to introduce individually selected types of surface modification for individual recipients.

View Article and Find Full Text PDF