Quantum optical coherence tomography (Q-OCT) presents many advantages over its classical counterpart, optical coherence tomography (OCT), provides an increased axial resolution, and is immune to even orders of dispersion. The core of Q-OCT is the quantum interference of negatively correlated entangled photon pairs which, in the Fourier domain, are observed by means of a joint spectrum measurement. In this work, we explore the use of a spectral approach in a novel configuration where classical light pulses are employed instead of entangled photons.
View Article and Find Full Text PDFWe consider a microscopy setting where quantum light is used for illumination. Spontaneous parametric down conversion (SPDC) is used as a source of a heralded single photon, which is quantum light prepared in a Fock state. We present analytical formulas for the spatial mode tracking along with the heralded and non-heralded mode widths.
View Article and Find Full Text PDFQuantum-mimic Optical Coherence Tomography (Qm-OCT) images are cluttered with artefacts - parasitic peaks which emerge as a by-product of the algorithm used in this method. However, the shape and behaviour of an artefact are uniquely related to Group Velocity Dispersion (GVD) of the layer this artefact corresponds to and consequently, the GVD values can be inferred by carefully analysing them. Since for multi-layered objects the number of artefacts is too high to enable layer-specific analysis, we employ a solution based on Machine Learning.
View Article and Find Full Text PDFArtefacts in quantum-mimic optical coherence tomography are considered detrimental because they scramble the images even for the simplest objects. They are a side effect of autocorrelation, which is used in the quantum entanglement mimicking algorithm behind this method. Interestingly, the autocorrelation imprints certain characteristics onto an artefact - it makes its shape and characteristics depend on the amount of dispersion exhibited by the layer that artefact corresponds to.
View Article and Find Full Text PDFQuantum Optical Coherence Tomography (Q-OCT) uses quantum properties of light to provide several advantages over its classical counterpart, OCT: it achieves a twice better axial resolution with the same spectral bandwidth and it is immune to even orders of dispersion. Since these features are very sought-after in OCT imaging, many hardware and software techniques have been created to mimic the quantum behaviour of light and achieve these features using traditional OCT systems. The most recent, purely algorithmic scheme-an improved version of Intensity Correlation Spectral Domain OCT named ICA-SD-OCT-showed even-order dispersion cancellation and reduction of artefacts.
View Article and Find Full Text PDFA simple, room-temperature, cavity- and vacuum-free interface for a photon-matter interaction is implemented. In the experiment, a heralded single photon generated by the process of spontaneous parametric down-conversion is absorbed by an ensemble of nitrogen-vacancy color centers. The broad absorption spectrum associated with the phonon sideband solves the mismatch problem of a narrow absorption bandwidth in a typical atomic medium and broadband spectrum of quantum light.
View Article and Find Full Text PDFWe theoretically investigate the problem of finding optimal characteristics of photon pairs, produced in the spontaneous parametric down-conversion (SPDC) process, for fiber-based quantum communication protocols. By using the accessible setup parameters, the pump pulse duration and the extended phase-matching function width, we minimize the temporal width of SPDC photons within the general scenario. This allows one to perform more effectively the temporal filtering procedure, which aims at reducing the noise acquired by the measurement devices.
View Article and Find Full Text PDFQuantum optical coherence tomography (Q-OCT) is the non-classical counterpart of optical coherence tomography (OCT), a high-resolution 3D imaging technique based on white-light interferometry. Because Q-OCT uses a source of frequency-entangled photon pairs, not only is the axial resolution not affected by dispersion mismatch in the interferometer but is also inherently improved by a factor of two. Unfortunately, practical applications of Q-OCT are hindered by image-scrambling artefacts and slow acquisition times.
View Article and Find Full Text PDFIntensity levels allowed by safety standards (ICNIRP or ANSI) limit the amount of light that can be used in a clinical setting to image highly scattering or absorptive tissues with optical coherence tomography (OCT). To achieve high-sensitivity imaging at low intensity levels, we adapt a detection scheme-which is used in quantum optics for providing information about spectral correlations of photons-into a standard spectral domain OCT system. This detection scheme is based on the concept of dispersive Fourier transformation, where a fiber introduces a wavelength-dependent time delay measured by a single-pixel detector, usually a high-speed photoreceiver.
View Article and Find Full Text PDFThis work is a proposition of an experimental platform to observe quantum fictitious anticentrifugal force. We present an analytical and numerical treatment of a rectangular toroidal dielectric waveguide. Solving the Helmholtz equation, we obtain analytical solutions for transverse spatial modes and estimate their number as a function of system characteristics.
View Article and Find Full Text PDFA white light cavity (WLC) scheme is proposed to achieve broadband response in the terahertz (THz) region by enhanced nonlinear dispersion in a magnetized graphene system. In the weak probe field limit, the cavity linewidth is narrowed due to electromagnetically induced transparency, and then it becomes nearly as broad as the empty-cavity linewidth under the condition of Autler-Towns splitting. It is interesting to find that the cavity linewidth can be further broadened by enhanced nonlinear dispersion.
View Article and Find Full Text PDFWe consider the counterfactual protocol proposed in Phys. Rev. Lett.
View Article and Find Full Text PDFQuantum communication protocols can be significantly enhanced by careful preparation of the wavepackets of the utilized photons. Following the theoretical proposal published recently by our group, we experimentally demonstrate the effect of remote temporal wavepacket narrowing of a heralded single photon produced via spontaneous parametric down-conversion. This is done by utilizing a time-resolved measurement on the heralding photon which is frequency-entangled with the heralded photon.
View Article and Find Full Text PDFWe demonstrate niobium nitride based superconducting single-photon detectors sensitive in the spectral range 452-2300 nm. The system performance was tested in a real-life experiment with correlated photons generated by means of spontaneous parametric downconversion, where one photon was in the visible range and the other was in the infrared range. We measured a signal to noise ratio as high as 4×10 in our detection setting.
View Article and Find Full Text PDFCorrelated photon pairs produced by a spontaneous parametric down conversion (SPDC) process can be used for secure quantum communication over long distances including free space transmission over a link through turbulent atmosphere. We experimentally investigate the possibility to utilize the intrinsic strong correlation between the pump and output photon spatial modes to mitigate the negative targeting effects of atmospheric beam wander. Our approach is based on a demonstration observing the deflection of the beam on a spatially resolved array of single photon avalanche diodes (SPAD-array).
View Article and Find Full Text PDFThe double-slit experiment strikingly demonstrates the wave-particle duality of quantum objects. In this famous experiment, particles pass one-by-one through a pair of slits and are detected on a distant screen. A distinct wave-like pattern emerges after many discrete particle impacts as if each particle is passing through both slits and interfering with itself.
View Article and Find Full Text PDFSpectrally correlated photon pairs can be used to improve the performance of long-range fiber-based quantum communication protocols. We present a source based on spontaneous parametric downconversion, which allows one to control spectral correlations within the entangled photon pair without spectral filtering by changing the pump-pulse duration or the characteristics of the coupled spatial modes. The spectral correlations and polarization entanglement are characterized.
View Article and Find Full Text PDFCreating miniature chip scale implementations of optical quantum information protocols is a dream for many in the quantum optics community. This is largely because of the promise of stability and scalability. Here we present a monolithically integratable chip architecture upon which is built a photonic device primitive called a Bragg reflection waveguide (BRW).
View Article and Find Full Text PDFFrequency correlation (or decorrelation) of photon pairs is of great importance in long-range quantum communications and photonic quantum computing. We experimentally characterize a spontaneous parametric downconversion source, based on a β-barium borate crystal cut for type-II phase matching at 1550 nm, which has the capability to emit photons with positive or no spectral correlations. Our system employs a carefully designed detection method exploiting two InGaAs detectors.
View Article and Find Full Text PDFWe propose and demonstrate a method for measuring the spectral density matrix of a single photon pulse. The method is based on registering Hong-Ou-Mandel interference between a photon to be measured and a pair of attenuated and suitably delayed laser pulses described by a known spectral amplitude. The density matrix is retrieved from a two-dimensional interferogram of coincidence counts.
View Article and Find Full Text PDFWe propose and demonstrate a method for measuring the joint spectrum of photon pairs via Fourier spectroscopy. The biphoton spectral intensity is computed from a two-dimensional interferogram of coincidence counts. The method has been implemented for a type-I downconversion source using a pair of common-path Mach-Zehnder interferometers based on Soleil compensators.
View Article and Find Full Text PDF