A method of growing highly oriented MoS is presented. First, a Mo film is deposited on a graphene/SiC(0001) substrate and the subsequent annealing of it at 750 °C leads to intercalation of Mo underneath the graphene layer, which is confirmed by secondary ion mass spectrometry (SIMS) measurements. Formation of highly oriented MoS layers is then achieved by sulfurization of the graphene/Mo/SiC system using HS gas.
View Article and Find Full Text PDFThe application of secondary ion mass spectrometry (SIMS) in investigation and comparison of molybdenum disulfide (MoS2) films grown on SiO2, Al2O3 and BN substrates is presented. SIMS measurements of the MoS2/substrate interface reveals oxygen out-diffusion from the substrates containing oxygen and the formation of an amorphous MoOS layer in addition to MoS2. The total area of MoS2 domains covering the substrate is directly related to the type of substrate.
View Article and Find Full Text PDFFurther development and optimization of modern optoelectronic devices requires fast and reliable procedures that may evaluate the quality of interfaces. For thick multilayer devices, mixing effect may significantly prevent proper interpretation of secondary ion mass spectrometry depth profiles especially if a region of interest is located far from the sample surface. In this work, we present how to overcome this problem with a so-called a-crater-within-a-crater approach.
View Article and Find Full Text PDF