Publications by authors named "Piotr Jamroz"

Specialized chemicals are used for intensifying food production, including boosting meat and crop yields. Among the applied formulations, antibiotics and pesticides pose a severe threat to the natural balance of the ecosystem, as they either contribute to the development of multidrug resistance among pathogens or exhibit ecotoxic and mutagenic actions of a persistent character. Recently, cold atmospheric pressure plasmas (CAPPs) have emerged as promising technologies for degradation of these organic pollutants.

View Article and Find Full Text PDF

An alternative method of rice sample preparation for measuring the total content of selected elements, , Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Sr and Zn, by ICP OES was developed. The proposed approach is based on the ultrasound-assisted extraction (USAE) of rice samples in the presence of a small amount of concentrated HNO. The optimal operating parameters were found using the design of experiments (DOE) approach, and the studied experimental factors were the temperature of the ultrasonic bath (), the sonication time (), and the volume of concentrated HNO added per 0.

View Article and Find Full Text PDF

Progressive incidence and a pessimistic survival rate of breast cancer in women worldwide remains one of the most concerning topics. Progressing research indicates a potentially high effectiveness of use cold atmospheric plasma (CAP) systems. The undoubted advantage seems its simplicity in combination with other anti-cancer modalities.

View Article and Find Full Text PDF

Atmospheric pressure plasma treatments are nowadays gaining importance to improve the performance of biomaterials in the orthopedic field. Among those, magnesium phosphate-based cements (MPCs) have recently shown attractive features as bone repair materials. The effect of plasma treatments on such cements, which has not been investigated so far, could represent an innovative strategy to modify MPCs' physicochemical properties and to tune their interaction with cells.

View Article and Find Full Text PDF

The common utilization of antimicrobial agents in medicine and veterinary creates serious problems with multidrug resistance spreading among pathogens. Bearing this in mind, wastewaters have to be completely purified from antimicrobial agents. In this context, a dielectric barrier discharge cold atmospheric pressure plasma (DBD-CAPP) system was used in the present study as a multifunctional tool for the deactivation of nitro-based pharmacuticals such as furazolidone (FRz) and chloramphenicol (ChRP) in solutions.

View Article and Find Full Text PDF

A new analytical method was proposed for multielement (Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Sr and Zn) analysis of Pu-erh teas infusions by inductively coupled plasma optical emission spectrometry. The Box-Behnken response surface design together with individual desirability functions and the joint desirability function approach was applied to develop experimental conditions of this new procedure, being alternative to high-temperature wet digestion. The procedure involved the samples to be just 5-fold diluted with 1.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created a system called pm-rf-APGD that effectively removes DOX from liquid solutions, achieving a removal efficiency of about 79%.
  • * The treated DOX solution loses most of its antimicrobial properties, making it less effective against certain bacteria, and the study suggests this technology could improve wastewater purification processes in the future.
View Article and Find Full Text PDF

Here we have presented a new method for the synthesis of Re nanostructures with defined optical, structural, and catalytic properties. The Re-based nanoparticles (NPs) were obtained using a reaction-discharge system that is unique in its class, because of its working in the high-throughput mode. Within this application, direct current atmospheric pressure glow discharge (dc-APGD) was used as a non-thermal atmospheric pressure plasma (NTAP) source, which led to the reduction of Re(vii) ions and the formation of Re nanostructures through the plasma-liquid interactions.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduced a new, simplified sample preparation method for analyzing coffee brews using the Box-Behnken design and individual desirability functions, aimed at improving environmental efficiency.
  • The process involves a 2-fold dilution with a 1.8 mol/L HNO solution followed by 8 minutes of sonication at room temperature.
  • The method demonstrated high precision (RSD of 0.6-7.5%) and accuracy (relative errors from -5.2% to +4.6%) for detecting multiple elements (Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Sr, Zn) with limits of detection ranging from 0.1 to 5 ng/g, and was successfully
View Article and Find Full Text PDF

We proposed an innovative and economic method for rapid production of functionalized orange juice (OJ) with excellent nutritional properties, prolonged shelf life, and safe consumption. To reach this goal, we have employed direct current atmospheric pressure glow discharge, generated in contact with a flowing liquid cathode (FLC-dc-APGD) in a highly-throughput reaction-discharge system. It was found that controlled FLC-dc-APGD-treatment of OJ lead to increase the concentration of selected metals and phenolic compounds.

View Article and Find Full Text PDF

Cold atmospheric pressure plasma (CAPP) is a prospective technology for various branches of industry. As such, much attention has been recently paid towards the use of CAPPs for treating fruit and vegetable beverages as they do not need any more to be thermally pasteurized or sanitized. However, this application of CAPPs is not only limited to the improvement of their shelf-life.

View Article and Find Full Text PDF

The present work presents a new nanocomposite catalyst with rhenium nanostructures (ReNSs) for the catalytic hydrogenation of 4-nitrophenol and 4-nitroaniline. The catalyst, based on an anion exchange resin with functionality derived from 1,1'-carboimidazole, was obtained in the process involving anion exchange of ReO ions followed by their reduction with NaBH. The amino functionality present in the resin played a primary role in the stabilization of the resultant ReNSs, consisting of ≈1% () Re in the polymer mass.

View Article and Find Full Text PDF

Plant pathogenic bacteria cause significant economic losses in the global food production sector. To secure an adequate amount of high-quality nutrition for the growing human population, novel approaches need to be undertaken to combat plant disease-causing agents. As the currently available methods to eliminate bacterial phytopathogens are scarce, we evaluated the effectiveness and mechanism of action of a non-thermal atmospheric pressure plasma (NTAPP).

View Article and Find Full Text PDF

The newest achievements in the field of glow microdischarges generated in contact with a flowing liquid cathode (FLC) and a flowing liquid anode (FLA), used as the excitation sources for optical emission spectrometry (OES), were summarized herein. The design of recently reported discharge systems was compared and comprehensively discussed. A lot of effort was devoted to evaluate the effect of selected operating parameters, i.

View Article and Find Full Text PDF

To the present day, no efficient plant protection method against economically important bacterial phytopathogens from the family has been implemented into agricultural practice. In this view, we have performed a multivariate optimization of the operating parameters of the reaction-discharge system, employing direct current atmospheric pressure glow discharge, generated in contact with a flowing liquid cathode (FLC-dc-APGD), for the production of a plasma-activated liquid (PAL) of defined physicochemical and anti-phytopathogenic properties. As a result, the effect of the operating parameters on the conductivity of PAL acquired under these conditions was assessed.

View Article and Find Full Text PDF

Breast cancer remains the most common type of cancer, occurring in middle-aged women, and often leads to patients' death. In this work, we applied a cold atmospheric pressure plasma (CAPP)-based reaction-discharge system, one that is unique in its class, for the production of CAPP-activated media (DMEM and Opti-MEM); it is intended for further uses in breast cancer treatment. To reach this aim, different volumes of DMEM or Opti-MEM were treated by CAPP.

View Article and Find Full Text PDF

We present an optimized non-thermal atmospheric plasma (NTAP)-based reaction-discharge system that was applied for a continuous-flow treatment of apple juice (AJ). To optimize this system for a high-throughput production of AJ with ameliorated properties, the effect of several parameters was studied using design of experiments approach followed by the response surface methodology. Additionally, nutritional, physicochemical, microbiological and cytotoxic properties of resulting AJ were assessed.

View Article and Find Full Text PDF

A one-step, highly-efficiency, and low-cost cold atmospheric pressure plasma (CAPP)-based method for obtaining safe-to-consume beetroot juice (BRJ) with enhanced nutritional quality is presented. Three reaction-discharge systems with different CAPPs were studied to check how the composition and physicochemical properties changed during CAPP treatment of BRJ. To identify reactive species occur in gas phase of applied CAPP for BRJ treatment, optical emission spectrometry was used.

View Article and Find Full Text PDF

Because cold atmospheric pressure plasma (CAPP)-based technologies are very useful tools in nanomaterials synthesis, in this work we have connected two unique in their classes approaches-a CAPP-based protocol and a green synthesis method in order to obtain stable-in-time gold nanoparticles (AuNPs). To do so, we have used an aqueous leave extract and an aqueous root extract (untreated or treated by CAPP) to produce AuNPs, suitable for catalytical uses. Firstly, we have adjusted the optical properties of resulted AuNPs, applying UV/Vis absorption spectrophotometry (UV/Vis).

View Article and Find Full Text PDF

This work reports the use of hanging drop cathode-atmospheric pressure glow discharge (HDC-APGD) as a new method of sample introduction for inductively coupled plasma-optical emission spectrometry (ICP-OES). The developed arrangement was characterized by a low sample uptake (0.56 mL min) and the fact that the entire sample solution volume was consumed by the discharge.

View Article and Find Full Text PDF

Background And Aim: Bee pollen is recognized to be a source of different nutrients, including minerals. As a food supplement, its quality and safety due to concentrations of essential macro- and microelements, and harmful trace elements has to be verified. Fast and simple element analysis of bee-collected pollen can be regarded as an important part of its quality assurance and control.

View Article and Find Full Text PDF

A new simple and rapid method for the determination of the total concentrations of Cu, Fe, Mn, and Zn in beetroot juices by flame atomic absorption spectrometry was developed and validated. The method included a very simple sample preparation, i.e.

View Article and Find Full Text PDF

A new method for the production of nanocomposites, composed of gold nanoparticles (AuNPs) and (vinylbenzyl)trimethylammonium chloride--,-methylene bisacrylamide (VBTAC--MBA) hydrogel, is described. Raw-AuNPs of defined optical and granulometric properties were synthesized using direct current atmospheric pressure glow discharge (dc-APGD) generated in contact with a solution of HAuCl₄. Different approaches to the polymerization-driven synthesis of Au/VBTAC--MBA nanocomposites were tested.

View Article and Find Full Text PDF

The use of flowing liquid anode atmospheric pressure glow discharge (FLA-APGD) operated with the aid of a gaseous jet as an efficient and novel excitation source for optical emission spectrometry (OES) was evaluated in details. Although about 50 elements have been tested by introducing respective standard solutions into a discharge system, only emission lines of Ag, Cd, Hg, In, Pb, Tl and Zn have been identified. In this arrangement, the surface of solution was bombarded by electrons resulting in generation of volatile species of mentioned elements.

View Article and Find Full Text PDF

Size-controlled gold nanoparticles (AuNPs) were synthesised with solutions of three types of Polish honeys (lime, multiflower, honeydew) and used in microwave-induced hyperthermia cancer treatment. Optical and structural properties of nanostructures were optimized in reference to measurements made by using UV/Vis absorption spectrophotometry (UV/Vis), transmission electron microscopy (TEM) supported by energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and attenuated total reflectance Fourier transformation infrared spectroscopy (ATR FT-IR). In addition, concentrations of reducing sugars and polyphenols of honeys applied were determined to reveal the role of these chemical compounds in green synthesis of AuNPs.

View Article and Find Full Text PDF