Two-dimensional materials composed of elements from the 15th group of the periodic table remain largely unexplored. The primary challenge in advancing this research is the lack of large-scale layers that would facilitate extensive studies using laterally averaging techniques and enable functionalization for the fabrication of novel electronic, optoelectronic, and spintronic devices. In this report, we present a method for synthesizing large-scale antimonene layers, on the order of cm.
View Article and Find Full Text PDFTwo-dimensional heterostructures, characterized by a twist angle between individual sublayers, offer unique and tunable properties distinct from standalone layers. These structures typically introduce a realm of exotic quantum phenomena due to the appearance of new, long range periodicities associated with Moiré superlattices. Using molecular beam epitaxy, we demonstrate the growth of bi-allotropic 2D-Sb heterostructures on a W(110) substrate composed of twisted α (α-Sb) and β (β-Sb) phases of antimonene.
View Article and Find Full Text PDFUsing molecular beam epitaxy, a new structural phase of a single atom thick antimony layer has been synthesized on the W(110) surface. Scanning tunneling microscopy measurements reveal an atomically resolved structure with a perfectly flat surface and unusually large unit cell. The structure forms a well-ordered continuous film with a lateral size in the range of several millimeters, as revealed by low energy electron microscopy and diffraction experiments.
View Article and Find Full Text PDFCorrection for 'A graphene/h-BN MEMS varactor for sub-THz and THz applications' by Piotr A. Dróżdż , , 2023, https://doi.org/10.
View Article and Find Full Text PDFRecent development of terahertz systems has created the need for new elements operating in this frequency band, , fast tunable devices such as varactors. Here, we present the process flow and characterization of a novel electronic variable capacitor device that is made with the use of 2D metamaterials such as graphene (GR) or hexagonal boron nitride (h-BN). Comb-like structures are etched into a silicon/silicon nitride substrate and a metal electrode is deposited at the bottom.
View Article and Find Full Text PDF