Publications by authors named "Piotr Cywinski"

In the human body, tumor cell occurrence can be indirectly monitored using the L-selectin concentration in the blood, since selectin ligands are present on the surface of tumor cells, and with tumor progression, a decrease in L-selectin levels can be expected and observed. In this study, we present a selective DNA-based surface-enhanced Raman spectroscopy (SERS) assay for the detection and determination of L-selectin in biological samples. Two calibration curves (linear in the 40-190 ng mL region and exponential in the 40-500 ng mL region) are fitted to the obtained SERS experimental data, i.

View Article and Find Full Text PDF

The aim of the study was to assess the biocidal effectiveness and the effect of 80% and 90% ethanol applied in the form of mist on the surface of textile materials from historical A-BSM objects. The microorganisms used for the tests, namely, , and , were isolated from the surface of textile objects in the A-BSM. , , and were also used from the American Type Culture Collection (ATCC).

View Article and Find Full Text PDF

Introduction: At the Auschwitz-Birkenau State Museum (A-BSM) actions have been undertaken to effectively protect employees and minimise risk of SARS-CoV-2 coronavirus spreading from the beginning of the COVID-19 epidemic.

Aim Of The Article: The aim was to present the actions, instructions and procedures introduced at the A-BSM to provide information how to deal with pandemic caused by the SARS-CoV-2 coronavirus in institutions taking care of cultural heritage before and after closure of the Museum for visitors and after reopening.

Materials And Methods: The described activities were developed at the Museum by a specially established Expert Team.

View Article and Find Full Text PDF

The surface organic ligands have profound effect on modulation of different physicochemical parameters as well as toxicological profile of semiconductor nanocrystals (NCs). Zinc oxide (ZnO) is one of the most versatile semiconductor material with multifarious potential applications and systematic approach to in-depth understand the interplay between ZnO NCs surface chemistry along with physicochemical properties and their nano-specific toxicity is indispensable for development of ZnO NCs-based devices and biomedical applications. To this end, we have used recently developed the one-pot self-supporting organometallic (OSSOM) approach as a model platform to synthesize a series of ZnO NCs coated with three different alkoxyacetate ligands with varying the ether tail length which simultaneously act as miniPEG prototypes.

View Article and Find Full Text PDF

The performance of bathymetric measurements by traditional methods (using manned vessels) in ultra-shallow waters, i.e., lakes, rivers, and sea beaches with a depth of less than 1 m, is often difficult or, in many cases, impossible due to problems related to safe vessel maneuvering.

View Article and Find Full Text PDF

The unique physicochemical properties and biocompatibility of zinc oxide nanocrystals (ZnO NCs) are strongly dependent on the nanocrystal/ligand interface, which is largely determined by synthetic procedures. Stable ZnO NCs coated with a densely packed shell of 2-(2-methoxyethoxy)acetate ligands, which act as miniPEG prototypes, with average core size and hydrodynamic diameter of 4-5 and about 12 nm, respectively, were prepared by an organometallic self-supporting approach, fully characterized, and used as a model system for biological studies. The ZnO NCs from the one-pot, self-supporting organometallic procedure exhibit unique physicochemical properties such as relatively high quantum yield (up to 28 %), ultralong photoluminescence decay (up to 2.

View Article and Find Full Text PDF

In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification.

View Article and Find Full Text PDF

New V-shaped non-centrosymmetric dyes, possessing a strongly electron-deficient azacyanine core, have been synthesized based on a straightforward two-step approach. The key step in this synthesis involves palladium-catalysed cross-coupling of dibromo-N,N'-methylene-2,2'-azapyridinocyanines with arylacetylenes. The resulting strongly polarized π-expanded heterocycles exhibit green to orange fluorescence and they strongly respond to changes in solvent polarity.

View Article and Find Full Text PDF

L-selectin is a protein with potential importance for numerous diseases and clinical disorders. In this paper, we present a new aptamer-based luminescent assay developed to detect L-selectin. The sensing system working principle is based on Förster Resonance Energy Transfer (FRET) from a donor terbium complex (TbC) to an acceptor cyanine dye (Cy5).

View Article and Find Full Text PDF

Previously unknown, vertically linked heterocycles comprised of benzofuran and iminocoumarin moieties have been synthesized directly from 1,5-dibenzoyloxyanthraquinone and arylacetonitriles via double Knoevenagel condensation followed by formal HCN elimination. The structural assembly of fully conjugated, electron-rich benzofuran and electron-deficient iminocoumarin is responsible for the strongly polarized nature of these heterocycles which translates into their polarity-sensitive fluorescence.

View Article and Find Full Text PDF

A detailed electrochemical, photophysical and theoretical study is presented for various new thienyl and furyl derivatives of pyrene. Their optical properties are described based on UV-VIS absorption and both steady-state and time-resolved fluorescence spectroscopy. DFT and TDDFT calculations are also presented to support experimental data.

View Article and Find Full Text PDF

In this paper, we investigate interactions and phase transitions in polyelectrolyte-surfactant complexes formed between a cationic azobenzene-containing surfactant and two types of polyelectrolytes: natural (DNA) or synthetic (PAA: poly acrylic acid). The construction of a phase diagram allowed distancing between four major phases: extended coil conformation, colloidally stable compacted globules, colloidal instability range, and surfactant-stabilized compact state. Investigation on the complexes' properties in different phases and under irradiation with UV light provides information about the role of the surfactant's hydrophobic trans isomers both in the formation and destruction of DNA and PAA globules as well as in their colloidal stabilization.

View Article and Find Full Text PDF

A set of tetraarylimidazoles bearing a 2-hydroxyphenyl substituent at position 4, as well as their models lacking intramolecular hydrogen bonds, was efficiently synthesized. Structural investigations proved that the hydrogen bond strength for 4-(2'-hydroxyphenyl)imidazoles is weaker than that for analogous 2-(2'-hydroxyphenyl)imidazoles as estimated from dihedral angles and bond distances. Photophysical investigations revealed that these compounds have other properties than those observed for imidazoles bearing a 2-hydroxyphenyl substituent at position 2.

View Article and Find Full Text PDF

DNA origami nanostructures are a versatile tool that can be used to arrange functionalities with high local control to study molecular processes at a single-molecule level. Here, we demonstrate that DNA origami substrates can be used to suppress the formation of specific guanine (G) quadruplex structures from telomeric DNA. The folding of telomeres into G-quadruplex structures in the presence of monovalent cations (e.

View Article and Find Full Text PDF

Nanobioconjugates have been synthesized using cadmium selenide quantum dots (QDs), europium complexes (EuCs), and biotin. In those conjugates, long-lived photoluminescence (PL) is provided by the europium complexes, which efficiently transfer energy via Förster resonance energy transfer (FRET) to the QDs in close spatial proximity. As a result, the conjugates have a PL emission spectrum characteristic for QDs combined with the long PL decay time characteristic for EuCs.

View Article and Find Full Text PDF

The synthesis of two novel types of π-expanded coumarins has been developed. Modified Knoevenagel bis-condensation afforded 3,9-dioxa-perylene-2,8-diones. Subsequent oxidative aromatic coupling or light driven electrocyclization reaction led to dibenzo-1,7-dioxacoronene-2,8-dione.

View Article and Find Full Text PDF

A new functional luminescent lanthanide complex (LLC) has been synthesized with terbium as a central lanthanide ion and biotin as a functional moiety. Unlike in typical lanthanide complexes assembled via carboxylic moieties, in the presented complex, four phosphate groups are chelating the central lanthanide ion. This special chemical assembly enhances the complex stability in phosphate buffers conventionally used in biochemistry.

View Article and Find Full Text PDF

Novel luminescent ratiometric nanosensors (QD-NAPTHs) were prepared based on cadmium telluride (CdTe655) quantum dots as luminescent nanoscaffolds with naphthyridine dyes as fluorescent receptors. This biosensing bifluorophoric nanosystem has been designed to achieve detection of guanosine 3',5'-cyclic monophosphate (cyclic GMP) in buffered media. Cyclic GMP is a secondary messenger that is an important factor for detecting cancer, diabetes and, cardiovascular diseases.

View Article and Find Full Text PDF

A homogeneous time-resolved luminescence resonance energy transfer (TR-LRET) assay has been developed to quantify proteins. The competitive assay is based on resonance energy transfer (RET) between two luminescent nanosized particles. Polystyrene nanoparticles loaded with Eu(3+) chelates (EuNPs) act as donors, while protein-coated quantum dots (QDs), either CdSe/ZnS emitting at 655 nm (QD655-strep) or CdSeTe/ZnS with emission wavelength at 705 nm (QD705-strep), are acceptors.

View Article and Find Full Text PDF

Due to their optical and electro-conductive attributes, carbazole derivatives are interesting materials for a large range of biosensor applications. In this study, we present the synthesis routes and fluorescence evaluation of newly designed carbazole fluorosensors that, by modification with uracil, have a special affinity for antiretroviral drugs via either Watson-Crick or Hoogsteen base pairing. To an N-octylcarbazole-uracil compound, four different groups were attached, namely thiophene, furane, ethylenedioxythiophene, and another uracil; yielding four different derivatives.

View Article and Find Full Text PDF

Novel fluorescent nanosensors, based on a naphthyridine receptor, have been developed for the detection of guanosine nucleotides, and both their sensitivity and selectivity to various nucleotides were evaluated. The nanosensors were constructed from polystyrene nanoparticles functionalized by (N-(7-((3-aminophenyl)ethynyl)-1,8-naphthyridin-2-yl)acetamide) via carbodiimide ester activation. We show that this naphthyridine nanosensor binds guanosine nucleotides preferentially over adenine, cytosine, and thymidine nucleotides.

View Article and Find Full Text PDF

A fluorescent naphthalimide chemosensor for ATP bearing a dipicolylamine group complexed with a Zn(II) metal as a receptor moiety was synthesized and its sensing properties regarding ATP and other related phosphate species were evaluated.

View Article and Find Full Text PDF

We present the synthesis of fluorescent acrylamide nanoparticles (FANs) capable of recognizing non-steroidal anti-inflammatory drugs (NSAIDs) in buffered aqueous solutions. Within this important group, we selected naproxen, one of the 2-arylpropionic acids (profens), due to its use for the treatment of moderate pain, fever, and inflammation. The nanosensors were prepared under mild conditions of inverse microemulsion polymerization using aqueous acrylamide as the monomer and N,N'-methylenebisacrylamide as the cross-linker, employing the surfactants polyoxyethylene-4-lauryl ether (Brij 30) and sodium bis(2-ethylhexyl)sulfosuccinate in hexane.

View Article and Find Full Text PDF

In aqueous solution, compounds containing the styrylpyridinium group showed dual fluorescence, in which excitation at either 469 or 360 nm each produced an emission band around 600 nm. The ratio of fluorescence intensities of the two bands (R = I469/I360) was sensitive to local viscosity. The N-carboxymethyl butyl ester of DMASP was found to be able to irreversibly load into a living cell; presumably by hydrolysis involving cellular lipases it was transformed to a membrane-impermeable fluorescent carboxylate.

View Article and Find Full Text PDF