Time-periodic driving facilitates a wealth of novel quantum states and quantum engineering. The interplay of Floquet states and strong interactions is particularly intriguing, which we study using time-periodic fields in a one-dimensional quantum gas, modeled by a Luttinger liquid with periodically changing interactions. By developing a time-periodic operator algebra, we are able to solve and analyze the complete set of nonequilibrium steady states in terms of a Floquet-Bogoliubov ansatz and known analytic functions.
View Article and Find Full Text PDF