Publications by authors named "Pintilie G"

Article Synopsis
  • West Nile virus (WNV) is spreading to new areas in Europe, including Romania, due to climate change and human activities, with significant outbreaks recorded since 1996.
  • A study focused on WNV strains in Romania from 2017 to 2023 analyzed viral sequences from mosquitoes, humans, and birds, highlighting the virus's ongoing circulation in the region.
  • The research found lineage 2 WNV in both mosquito samples and human sera, identifying sub-lineages and clusters that reflect complex transmission patterns and evolutionary changes over time.
View Article and Find Full Text PDF

The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein-nucleic acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution.

View Article and Find Full Text PDF

Alphaviruses are spherical, enveloped RNA viruses with two-layered icosahedral architecture. The structures of many alphaviruses have been studied using cryogenic electron microscopy (cryo-EM) reconstructions, which impose icosahedral symmetry on the viral particles. Using cryogenic electron tomography (cryo-ET), we revealed a polarized symmetry defect in the icosahedral lattice of Chikungunya virus (CHIKV) in situ, similar to the late budding particles, suggesting the inherent imperfect symmetry originates from the final pinch-off of assembled virions.

View Article and Find Full Text PDF

Unlabelled: Intracellular infectious agents, like the malaria parasite, , face the daunting challenge of how to invade a host cell. This problem may be even harder when the host cell in question is the enucleated red blood cell, which lacks the host machinery co-opted by many pathogens for internalization. Evolution has provided and related single-celled parasites within the phylum Apicomplexa with a collection of organelles at their apical end that mediate invasion.

View Article and Find Full Text PDF
Article Synopsis
  • In January 2020, a workshop at EMBL-EBI focused on data needs for cryoEM structure deposition and validation, specifically in single-particle analysis.
  • The workshop gathered 47 experts to discuss data processing, model building, validation, and archiving, leading to consensus recommendations.
  • The report outlines the workshop's goals, key discussions, challenges for future methods, and the progress made on implementing the recommendations.
View Article and Find Full Text PDF

CLC-2 is a voltage-gated chloride channel that contributes to electrical excitability and ion homeostasis in many different tissues. Among the nine mammalian CLC homologs, CLC-2 is uniquely activated by hyperpolarization, rather than depolarization, of the plasma membrane. The molecular basis for the divergence in polarity of voltage gating among closely related homologs has been a long-standing mystery, in part because few CLC channel structures are available.

View Article and Find Full Text PDF

The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein/nucleic-acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution.

View Article and Find Full Text PDF
Article Synopsis
  • - A workshop at EMBL-EBI in January 2020 brought together 47 experts to discuss data needs for cryoEM structures, focusing particularly on single-particle analysis.
  • - The report outlines the workshop's purpose, the discussions held, and the consensus recommendations made by the attendees.
  • - It also highlights future challenges in method development and notes the progress made on implementing some of the recommendations discussed.
View Article and Find Full Text PDF

Coronavirus spike glycoproteins presented on the virion surface mediate receptor binding, and membrane fusion during virus entry and constitute the primary target for vaccine and drug development. How the structure dynamics of the full-length spikes incorporated in viral lipid envelope correlates with the virus infectivity remains poorly understood. Here we present structures and distributions of native spike conformations on vitrified human coronavirus NL63 (HCoV-NL63) virions without chemical fixation by cryogenic electron tomography (cryoET) and subtomogram averaging, along with site-specific glycan composition and occupancy determined by mass spectrometry.

View Article and Find Full Text PDF

CLC-2 is a voltage-gated chloride channel that contributes to electrical excitability and ion homeostasis in many different mammalian tissues and cell types. Among the nine mammalian CLC homologs, CLC-2 is uniquely activated by hyperpolarization, rather than depolarization, of the plasma membrane. The molecular basis for the divergence in polarity of voltage gating mechanisms among closely related CLC homologs has been a long-standing mystery, in part because few CLC channel structures are available, and those that exist exhibit high conformational similarity.

View Article and Find Full Text PDF

In this issue of Structure, Reggiano et al. take the evaluation of cryo-EM models to the next level, combining several metrics into one. The new method, MEDIC, evaluates models at the residue level, helping to guide improvements and interpretation of models derived from cryo-EM maps.

View Article and Find Full Text PDF

Background: There is a growing awareness of the effects of fatigue on trainee wellbeing and health. Trainees in anaesthesiology and intensive care work long hours, switching work schedules frequently with insufficient rest. This may have unwanted long-term effects on mental and physical health and emotional well being, resulting in burnout and affecting patient safety.

View Article and Find Full Text PDF

Group I introns are catalytic RNAs that coordinate two consecutive transesterification reactions for self-splicing. To understand how the group I intron promotes catalysis and coordinates self-splicing reactions, we determine the structures of L-16 Tetrahymena ribozyme in complex with a 5'-splice site analog product and a 3'-splice site analog substrate using cryo-EM. We solve six conformations from a single specimen, corresponding to different splicing intermediates after the first ester-transfer reaction.

View Article and Find Full Text PDF

Coronavirus spike glycoproteins presented on the virion surface mediate receptor binding, and membrane fusion during virus entry and constitute the primary target for vaccine and drug development. How the structure dynamics of the full-length spikes incorporated in viral lipid envelope correlates with the virus infectivity remains poorly understood. Here we present structures and distributions of native spike conformations on vitrified human coronavirus NL63 (HCoV-NL63) virions without chemical fixation by cryogenic electron tomography (cryoET) and subtomogram averaging, along with site-specific glycan composition and occupancy determined by mass spectroscopy.

View Article and Find Full Text PDF

Tetrahymena ribozyme is a group I intron, whose self-splicing is the result of two sequential ester-transfer reactions. To understand how it facilitates catalysis in the first self-splicing reaction, we used cryogenic electron microscopy (cryo-EM) to resolve the structures of L-16 Tetrahymena ribozyme complexed with a 11-nucleotide 5'-splice site analog substrate. Four conformations were achieved to 4.

View Article and Find Full Text PDF

The ATP-dependent ring-shaped chaperonin TRiC/CCT is essential for cellular proteostasis. To uncover why some eukaryotic proteins can only fold with TRiC assistance, we reconstituted the folding of β-tubulin using human prefoldin and TRiC. We find unstructured β-tubulin is delivered by prefoldin to the open TRiC chamber followed by ATP-dependent chamber closure.

View Article and Find Full Text PDF

As a discipline, structural biology has been transformed by the three-dimensional electron microscopy (3DEM) "Resolution Revolution" made possible by convergence of robust cryo-preservation of vitrified biological materials, sample handling systems, and measurement stages operating a liquid nitrogen temperature, improvements in electron optics that preserve phase information at the atomic level, direct electron detectors (DEDs), high-speed computing with graphics processing units, and rapid advances in data acquisition and processing software. 3DEM structure information (atomic coordinates and related metadata) are archived in the open-access Protein Data Bank (PDB), which currently holds more than 11,000 3DEM structures of proteins and nucleic acids, and their complexes with one another and small-molecule ligands (~ 6% of the archive). Underlying experimental data (3DEM density maps and related metadata) are stored in the Electron Microscopy Data Bank (EMDB), which currently holds more than 21,000 3DEM density maps.

View Article and Find Full Text PDF

The group I intron has been a key system in the understanding of RNA folding and misfolding. The molecule folds into a long-lived misfolded intermediate (M) , which has been known to form extensive native-like secondary and tertiary structures but is separated by an unknown kinetic barrier from the native state (N). Here, we used cryogenic electron microscopy (cryo-EM) to resolve misfolded structures of the L-21 ScaI ribozyme.

View Article and Find Full Text PDF

RNA-based macromolecular machines, such as the ribosome, have functional parts reliant on structural interactions spanning sequence-distant regions. These features limit evolutionary exploration of mutant libraries and confound three-dimensional structure-guided design. To address these challenges, we describe Evolink (evolution and linkage), a method that enables high-throughput evolution of sequence-distant regions in large macromolecular machines, and library design guided by computational RNA modeling to enable exploration of structurally stable designs.

View Article and Find Full Text PDF

Cryogenic electron microscopy (cryo-EM) has emerged as a viable structural tool for molecular therapeutics development against human diseases. However, it remains a challenge to determine structures of proteins that are flexible and smaller than 30 kDa. The 11 kDa KIX domain of CREB-binding protein (CBP), a potential therapeutic target for acute myeloid leukemia and other cancers, is a protein which has defied structure-based inhibitor design.

View Article and Find Full Text PDF

Tubulin is a conserved protein that polymerizes into different forms of filamentous structures in , an obligate intracellular parasite in the phylum Apicomplexa. Two key tubulin-containing cytoskeletal components are subpellicular microtubules (SPMTs) and conoid fibrils (CFs). The SPMTs help maintain shape and gliding motility, while the CFs are implicated in invasion.

View Article and Find Full Text PDF

This protocol describes the reconstitution of the filamentous Ebola virus nucleocapsid-like assembly . This is followed by solving the cryo-EM structure using helical reconstruction, and flexible fitting of the existing model into the 5.8 Å cryo-EM map.

View Article and Find Full Text PDF

Assembly-line polyketide synthases, such as the 6-deoxyerythronolide B synthase (DEBS), are large enzyme factories prized for their ability to produce specific and complex polyketide products. By channeling protein-tethered substrates across multiple active sites in a defined linear sequence, these enzymes facilitate programmed small-molecule syntheses that could theoretically be harnessed to access countless polyketide product structures. Using cryogenic electron microscopy to study DEBS module 1, we present a structural model describing this substrate-channeling phenomenon.

View Article and Find Full Text PDF

Lon is an evolutionarily conserved proteolytic machine carrying out a wide spectrum of biological activities by degrading misfolded damaged proteins and specific cellular substrates. Lon contains a large N-terminal domain and forms a hexameric core of fused adenosine triphosphatase and protease domains. Here, we report two complete structures of Lon engaging a substrate, determined by cryo–electron microscopy to 2.

View Article and Find Full Text PDF