Publications by authors named "Pinnara Rojvirat"

Aquilaria crassna is a herbal plant that has recently been reported to possess several biological activities. A. crassna leaf extracts have been demonstrated to have a glucose-lowering effect in animal models.

View Article and Find Full Text PDF

Here we showed that the c-Myc oncogene is responsible for overexpression of pyruvate carboxylase (PC) in highly invasive MDA-MB-231 cells. Pharmacological inhibition of c-Myc activity with 10074-G5 compound, resulted in a marked reduction of PC mRNA and protein, concomitant with reduced cell growth, migration and invasion. This growth inhibition but not migration and invasion can be partly restored by overexpression of PC, indicating that PC is a c-Myc-regulated pro-proliferating enzyme.

View Article and Find Full Text PDF

Fructose-1,6-bisphosphatase (FBP1) plays an essential role in gluconeogenesis. Here we report that the human FBP1 gene is regulated by two liver-enriched transcription factors, CCAAT-enhancer binding protein-α (C/EBPα) and hepatocyte nuclear factor 4α (HNF4α) in human hepatoma HepG2 cells. C/EBPα regulates transcription of FBP1 gene via binding to the two overlapping C/EBPα sites located at nucleotide -228/-208 while HNF4α regulates FBP1 gene through binding to the classical H4-SBM site and direct repeat 3 (DR3) located at nucleotides -566/-554 and -212/-198, respectively.

View Article and Find Full Text PDF

Maintenance of systemic glucose homeostasis is pivotal in animals because most tissues, especially brain and red blood cells, rely on glucose as the sole energy source. The liver protects the body from hypoglycemia because it possesses two biochemical pathways, namely gluconeogenesis and glycogenolysis which provide glucose during starvation period. Posttranslational regulation by allosteric effectors and/or reversible phosphorylation of the key enzymes involved in these two pathways provide the rapid response for the immediate increase in the enzyme activities to accelerate rates of gluconeogenesis and glycogenolysis, but these mechanisms are insufficient for long-term control.

View Article and Find Full Text PDF

Pyruvate carboxylase (PC) is the first regulatory enzyme of gluconeogenesis. Here we report that the proximal promoter of the murine PC gene contains three binding sites for hepatocyte nuclear factor 4α (HNF4α). These sites include the classical direct repeat 1 (DR1) (-386/-374), non-perfect DR1 (-118/-106) and HNF4α-specific binding motif (H4-SBM) (-26/-14).

View Article and Find Full Text PDF

Pyruvate carboxylase (PC) is an enzyme that plays a crucial role in many biosynthetic pathways in various tissues including glucose-stimulated insulin secretion. In the present study, we identify promoter usage of the human PC gene in pancreatic beta cells. The data show that in the human, two alternative promoters, proximal and distal, are responsible for the production of multiple mRNA isoforms as in the rat and mouse.

View Article and Find Full Text PDF

Pyruvate carboxylase (PC) catalyzes the first committed step in gluconeogenesis in the liver. The murine PC gene possesses two promoters, the proximal (P1) and the distal (P2) which mediate production of distinct tissue-specific mRNA isoforms. By comparing the luciferase activities of 5'-nested deletions of the P1-promoter in the AML12 mouse hepatocyte cell line, the critical cis-acting elements required for maintaining basal transcription were located within the 166 nucleotides proximal to the transcription start site.

View Article and Find Full Text PDF

Pyruvate carboxylase (PC) catalyzes the first committed step in gluconeogenesis. Here we investigated the effect of various hormones including cAMP, dexamethasone and insulin on the abundance of PC mRNA in the human hepatocyte cell line, HepG2. Treatment of HepG2 cells with 1 microM of glucagon increased the expression of PC mRNA threefold within 72 h.

View Article and Find Full Text PDF

PC (pyruvate carboxylase) plays a crucial role in intermediary metabolism including glucose-induced insulin secretion in pancreatic islets. In the present study, we identified two regions of the 1.2 kb distal promoter, the -803/-795 site and the -408/-403 E-box upstream of the transcription start site, as the important cis-acting elements for transcriptional activation of the luciferase reporter gene.

View Article and Find Full Text PDF