Publications by authors named "Pinloche E"

Article Synopsis
  • The probiotic 29784 (Bs29784) supports chicken intestinal health by producing metabolites like hypoxanthine, niacin, and pantothenate, enhancing resilience and performance through immune response, barrier function, and microbiota modulation.
  • Experimental models showed that Bs29784 vegetative cells significantly reduced inflammation and improved intestinal integrity better than spores, while individual metabolites had distinct positive effects on inflammation and cell growth.
  • Fermentation studies revealed that different metabolites influenced the microbiota and fermentation profiles, with specific compounds like PTH and HPX enhancing epithelial resilience and overall intestinal health.
View Article and Find Full Text PDF

The role of 2-hydroxy-(4-methylseleno)butanoic acid (OH-SeMet), a form of organic selenium (Se), in selenoprotein synthesis and inflammatory response of THP1-derived macrophages stimulated with lipopolysaccharide (LPS) has been investigated. Glutathione peroxidase (GPX) activity, GPX1 gene expression, selenoprotein P (SELENOP) protein and gene expression, and reactive oxygen species (ROS) production were studied in Se-deprived conditions (6 and 24 h). Then, macrophages were supplemented with OH-SeMet for 72 h and GPX1 and SELENOP gene expression were determined.

View Article and Find Full Text PDF

The probiotic strain 29784 (Bs29784) has been shown to improve performance in broilers. In this study, we used a metabolomic and 16S rRNA gene sequencing approach to evaluate effects of Bs29874 in the broiler intestine. Nicotinic acid and hypoxanthine were key metabolites that were produced by the strain in vitro and were also found in vivo to be increased in small intestinal content of broilers fed Bs29784 as dietary additive.

View Article and Find Full Text PDF

The world is on the verge of a major antibiotic crisis as the emergence of resistant bacteria is increasing, and very few novel molecules have been discovered since the 1960s. In this context, scientists have been exploring alternatives to conventional antibiotics, such as ribosomally synthesized and post-translationally modified peptides (RiPPs). Interestingly, the highly potent in vitro antibacterial activity and safety of ruminococcin C1, a recently discovered RiPP belonging to the sactipeptide subclass, has been demonstrated.

View Article and Find Full Text PDF

Background: Selenium (Se) participates in different functions in humans and other animals through its incorporation into selenoproteins as selenocysteine. Inadequate dietary Se is considered a risk factor for several chronic diseases associated with oxidative stress.

Objective: The role of 2-hydroxy-(4-methylseleno)butanoic acid (HMSeBA), an organic form of Se used in animal nutrition, in supporting selenoprotein synthesis and protecting against oxidative stress was investigated in an in vitro model of intestinal Caco-2 cells.

View Article and Find Full Text PDF

The role of marine lipids as modulators of ruminal biohydrogenation of dietary unsaturated fatty acids may be explained by the effects of their n-3 polyunsaturated fatty acids (PUFA) on the bacterial community. However, the impact of individual PUFA has barely been examined, and it is uncertain which bacteria are truly involved in biohydrogenation. In addition, despite interspecies differences in rumen bacterial composition, we are not aware of any direct comparison of bovine and ovine responses to dietary PUFA.

View Article and Find Full Text PDF

Next-generation sequencing of DNA from nematode eggs has been utilised to give the first account of the equine 'nemabiome'. In all equine faecal samples investigated, multiple species of Strongylidae were detected, ranging from 7.5 (SEM 0.

View Article and Find Full Text PDF

This work aimed to gain insight into the transition from milk to solid feeding at weaning combining genomics and metabolomics on rumen contents from goat kids treated with a methanogenic inhibitor (bromochloromethane, BCM). Sixteen goats giving birth to two kids were used. Eight does were treated (D+) with BCM after giving birth and over 2 months.

View Article and Find Full Text PDF

Background: Non typhoidal salmonellosis is one of the neglected zoonoses in most African countries. The use of sub-therapeutic doses of antibiotics as animal growth promoter enhances the emergence and dissemination of antimicrobial resistance in bacteria with food animal reservoirs and may also results in antibiotics residue in animal products. One promising alternative to antibiotics in animal feed is Lactic Acid Bacteria (LAB) as probiotics.

View Article and Find Full Text PDF

As an alternative to antibiotic growth promoters, live yeast supplementation has proven useful in reducing weaning stress and improving performance parameters of piglets. Here, we compared the performance and hindgut microbiota of weanling piglets subjected to different pre- and post-weaning yeast supplementation regimens using a live strain of Saccharomyces cerevisiae (Actisaf Sc 47). Average feed intake and average daily weight gain of piglets within Yeast-Control and Yeast-Yeast groups were higher than those in the Control-Control group.

View Article and Find Full Text PDF

The aim of this work was to evaluate the effect of feeding management during the first month of life (natural with the mother, NAT, or artificial with milk replacer, ART) on the rumen microbial colonization and the host innate immune response. Thirty pregnant goats carrying two fetuses were used. At birth one kid was taken immediately away from the doe and fed milk replacer (ART) while the other remained with the mother (NAT).

View Article and Find Full Text PDF

This study investigates the effects of supplementing a control diet (CON) with chitosan (CHI) or ivy fruit saponins (IVY) as natural feed additives. Both additives had similar abilities to decrease rumen methanogenesis (-42% and -40%, respectively) using different mechanisms: due to its antimicrobial and nutritional properties CHI promoted a shift in the fermentation pattern towards propionate production which explained about two thirds of the decrease in methanogenesis. This shift was achieved by a simplification of the structure in the bacterial community and a substitution of fibrolytic (Firmicutes and Fibrobacteres) by amylolytic bacteria (Bacteroidetes and Proteobacteria) which led to greater amylase activity, lactate and microbial protein yield with no detrimental effect on feed digestibility.

View Article and Find Full Text PDF

The development of next generation sequencing has challenged the use of other molecular fingerprinting methods used to study microbial diversity. We analysed the bacterial diversity in the rumen of defaunated sheep following the introduction of different protozoal populations, using both next generation sequencing (NGS: Ion Torrent PGM) and terminal restriction fragment length polymorphism (T-RFLP). Although absolute number differed, there was a high correlation between NGS and T-RFLP in terms of richness and diversity with R values of 0.

View Article and Find Full Text PDF

Faecal samples were collected from seventeen animals, each fed three different diets (high fibre, high fibre with a starch rich supplement and high fibre with an oil rich supplement). DNA was extracted and the V1-V2 regions of 16SrDNA were 454-pyrosequenced to investigate the faecal microbiome of the horse. The effect of age was also considered by comparing mature (8 horses aged 5-12) versus elderly horses (9 horses aged 19-28).

View Article and Find Full Text PDF

Developing novel strategies to increase the content of bioactive unsaturated fatty acids (FA) in ruminant-derived products requires a deeper understanding of rumen biohydrogenation and bacteria involved in this process. Although high-throughput pyrosequencing may allow for a great coverage of bacterial diversity, it has hardly been used to investigate the microbiology of ruminal FA metabolism. In this experiment, 454 pyrosequencing and a molecular fingerprinting technique (terminal restriction fragment length polymorphism; T-RFLP) were used concurrently to assess the effect of diet supplementation with marine algae (MA) on the rumen bacterial community of dairy sheep.

View Article and Find Full Text PDF

The horse has a rich and complex microbial community within its gastrointestinal tract that plays a central role in both health and disease. The horse receives much of its dietary energy through microbial hydrolysis and fermentation of fiber predominantly in the large intestine/hindgut. The presence of a possible core bacterial community in the equine large intestine was investigated in this study.

View Article and Find Full Text PDF

The horse, as a hindgut fermenter, is reliant on its intestinal bacterial population for efficient diet utilisation. However, sudden disturbance of this population can result in severe colic or laminitis, both of which may require euthanasia. This study therefore aimed to determine the temporal stability of the bacterial population of faecal samples from six ponies maintained on a formulated high fibre diet.

View Article and Find Full Text PDF

Following the isolation, cultivation and characterization of the rumen bacterium Anaerovibrio lipolyticus in the 1960s, it has been recognized as one of the major species involved in lipid hydrolysis in ruminant animals. However, there has been limited characterization of the lipases from the bacterium, despite the importance of understanding lipolysis and its impact on subsequent biohydrogenation of polyunsaturated fatty acids by rumen microbes. This study describes the draft genome of Anaerovibrio lipolytica 5ST, and the characterization of three lipolytic genes and their translated protein.

View Article and Find Full Text PDF

It has been suggested that the ability of live yeast to improve milk yield and weight gain in cattle is because the yeast stimulates bacterial activity within the rumen. However it remains unclear if this is a general stimulation of all species or a specific stimulation of certain species. Here we characterised the change in the bacterial population within the rumen of cattle fed supplemental live yeast.

View Article and Find Full Text PDF

The impact of 2 doses of a Saccharomyces cerevisiae were evaluated, 5 × 10(10) cfu/kg of feed (L1) and 5 × 10(11) cfu/kg of feed (L2) against a control (CON) with no added yeast, using an in vitro model [colon simulation technique (Cositec)] to mimic digestion in the pig colon. The L2 (but not L1) dose significantly improved DM digestibility compared to CON (61 v 58%) and increased NH(3) concentrations (+15%). Volatile fatty acid concentrations increased with L2 compared to CON--isobutyrate (+13.

View Article and Find Full Text PDF

Balancing energy and nitrogen in the rumen is a key to both profitability and environmental sustainability. Four dairy cows were used in a Latin square experimental design to investigate the effect of severe nitrogen underfeeding (110 vs. 80% of requirements) and the type of carbohydrate consumed [neutral detergent fiber rich (FIB) vs.

View Article and Find Full Text PDF

Accurate estimates of microbial synthesis in the rumen are vital to optimize ruminant nutrition. Liquid- (LAB) and solid-associated bacterial fractions (SAB) harvested from the rumen are generally considered as microbial references when microbial yield is calculated; however, factors that determine their composition are not completely understood. The aim of this study was to evaluate the effect of diet and absence or presence of rumen protozoa on the rumen microbial community.

View Article and Find Full Text PDF

Microbial biohydrogenation of dietary poly-unsaturated fatty acids (PUFA) to saturated fatty acids (SFA) in the rumen results in the high ratio of SFA/PUFA in ruminant products, such as meat and milk. In vitro, Butyrivibrio proteoclasticus-related bacteria extensively biohydrogenate PUFA to SFA, yet their contribution in the rumen has not been confirmed. The aim of this study was to evaluate the role of Butyrivibrio proteoclasticus group bacteria in ruminal biohydrogenation and to assess the possible role of other bacteria.

View Article and Find Full Text PDF

The aim of this experiment was to study the persistence in time of bacterial and methanogenic archaeal communities that establish in the rumen of lambs fed two different diets at weaning. Twenty ewes with single lambs were used in two phases. In phase I, 10 lambs had access only to grass hay (H group).

View Article and Find Full Text PDF

The effect of caprylic acid, either in its pure form, or as Akomed R, on the microbial community of the stomach and caecum of farmed rabbits was investigated. This fatty acid, which is often added to the diet of farmed rabbits to reduce mortality rates was shown to reduce the number of coliforms isolated from both the stomach and the caecum. Moreover, it led to a reduction in the total number of anaerobic bacteria isolated from the caecum, but not for those isolated from the stomach.

View Article and Find Full Text PDF