We describe a 1,2-alkylboration of 3-alkylidene-2-oxindoles with a diboron reagent and alkyl bromides and iodides enabled by copper/bisphosphine catalysis. This scalable alkylboration method provides facile access to 3,3'-dialkyloxindole boronic esters featuring an all-carbon quaternary stereocenter and an increased F(sp) fraction. In addition to good functional group tolerance and prolific utilization of drug/pesticide-derived alkyl iodides, the conversion of the C-B bond to a C-C/C-X bond offers further opportunities for structural variation of 3,3'-dialkyloxindoles.
View Article and Find Full Text PDFWe describe an organophotoredox-catalyzed sp C-S coupling of -sulfinylamines with bench-stable alkyltrifluoroborates as a latent nucleophilic counterpart en route to alkylsulfinamides in high efficiency. In contrast to the two-electron reactivity of traditional organometallic reagents, this catalytic method reports the single-electron process of an organometallic reagent with -sulfinylamines in C-S coupling. This mild and scalable protocol offers operational simplicity and exceptional functional group compatibility, including ketone, ester, amide, nitrile, and halides, that is vulnerable to organolithium or Grignard reagents.
View Article and Find Full Text PDFWe describe a novel, regioselective alkylboration of versatile (hetero)benzylidenecyclopropanes with β-H-containing alkyl iodides and bis(pinacolato)diboron enabled by copper catalysis. This three-component method allows for consecutive B-Csp and Csp-Csp bond formation to access Csp-enriched diverse tertiary cyclopropyl boronic esters with broad functionality tolerance, and the so-formed C-B bond is amenable to further structural diversification. Radical clock experiment, Hammett analysis, and DFT calculation suggest a mechanism of polar, rather than radical manifold, and S2-type C-C bond formation was found to be the rate-limiting step instead of migratory alkene insertion.
View Article and Find Full Text PDFA visible-light-photocatalyzed 1,2-arylalkylation of -(arylsulfonyl)acrylamides with ketone-based dihydroquinazolinones is described. The formal C-C bond cleavage of aliphatic ketones is unified with tandem radical alkylation/1,4-aryl migration/desulfonylation to forge two different types of vicinal C-C bonds and construct an all-carbon quaternary α-stereocenter, thus enhancing the carbogenic complexity and tolerating diverse functionalities. Additional to telescopic synthesis and product diversification, this method features a radical dicarbofunctionalization of conjugated -(arylsulfonyl)acrylamides with a nucleophilic alkyl radical precursor (dihydroquinazolinone) utilizing oxygen as a green oxidant at ambient temperature.
View Article and Find Full Text PDFA silver-catalysed oxidative sp C-H alkylation of -heteroarenes with ketone-derived 2,3-dihydroquinazolinones at room temperature is developed. The combination of a metal catalyst and perdisulfate oxidant promotes the rarely explored thermal activation of pre-aromatic 2,3-dihydroquinazolinone to generate an alkyl radical, supported by mechanistic studies. In addition to the broad scope, good functionality tolerance, late stage functionalization of APIs, and synthesis of a novel Papaverine analogue, the utilization of an -heteroarene C-H bond and ketone as a non-trivial alkyl radical source represents the salient feature of this method.
View Article and Find Full Text PDFIn this highlight, O-protected NH-free hydroxylamine derivatives have been evaluated in the construction of nitrogen-enriched compounds, such as primary amines, amides, and N-heterocycles, with high regio-, chemo- and stereoselectivity in the unprotected form, showcasing the late-stage functionalization of natural products, drugs and functional molecules by biocatalysis, organocatalysis, and transition metal catalysis. The reactivity dichotomy among these N-O reagents has been explored based on SET and metal-nitrenoids.
View Article and Find Full Text PDF