We analyze the time resolved spike statistics of a solitary and two mutually interacting chaotic semiconductor lasers whose chaos is characterized by apparently random, short intensity spikes. Repulsion between two successive spikes is observed, resulting in a refractory period, which is largest at laser threshold. For time intervals between spikes greater than the refractory period, the distribution of the intervals follows a Poisson distribution.
View Article and Find Full Text PDFTwo mutually coupled chaotic diode lasers exhibit stable isochronal synchronization in the presence of self-feedback. When the mutual communication between the lasers is discontinued by a shutter and the two uncoupled lasers are subject to self-feedback only, the desynchronization time is found to scale as Adtau, where Ad>1 and tau corresponds to the optical distance between the lasers. Prior to synchronization, when the two lasers are uncorrelated and the shutter between them is opened, the synchronization time is found to be much shorter, though still proportional to tau.
View Article and Find Full Text PDF