Publications by authors named "Pinhal D"

Bacteria, the primary microorganisms used for industrial molecule production, do not naturally generate miRNAs. This study aims to systematically review current literature on miRNA expression systems in bacteria and address three key questions: (1) Which microorganism is most efficient for heterologous miRNA production? (2) What essential elements should be included in a plasmid construction to optimize miRNA expression? (3) Which commercial plasmid is most used for miRNA expression? Initially, 832 studies were identified across three databases, with fifteen included in this review. Three species-Escherichia coli, Salmonella typhimurium, and Rhodovulum sulfidophilum-were found as host organisms for recombinant miRNA expression.

View Article and Find Full Text PDF

This study examines the effects of Roundup Transorb® (RDT) exposure on reproductive functions and ovarian miRNA expression in Austrolebias charrua. Exposure to RDT (at 0.065 or 5 mg.

View Article and Find Full Text PDF
Article Synopsis
  • MicroRNAs are important for regulating development, physiology, and stress responses in fish, specifically teleosts like Nile tilapia.
  • The study evaluated the expression stability of seven specific miRNAs under osmotic stress by comparing fish in different salinity conditions, using various mathematical algorithms to find the best reference miRNAs.
  • Findings suggest that the combination of miR-455 and miR-23a is the most reliable for normalizing miRNA expression in stressed Nile tilapia, highlighting the need for context-specific reference genes in future research to better manage aquaculture practices.
View Article and Find Full Text PDF

In metazoans, microRNAs (miRNAs) are essential regulators of gene expression, affecting critical cellular processes from differentiation and proliferation, to homeostasis. During miRNA biogenesis, the miRNA strand that loads onto the RNA-induced Silencing Complex (RISC) can vary, leading to changes in gene targeting and modulation of biological pathways. To investigate the impact of these "arm switching" events on gene regulation, we analyzed a diverse range of tissues and developmental stages in zebrafish by comparing 5p and 3p arms accumulation dynamics between embryonic developmental stages, adult tissues, and sexes.

View Article and Find Full Text PDF

Neotropical freshwater stingrays (subfamily Potamotrygoninae) are carnivorous bottom feeder batoids widely distributed in most river basins of South America. They represent the unique extant group of elasmobranchs that evolved to live exclusively in freshwater environments. These species are exploited either by commercial fisheries (e.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a significant cause of cancer-related deaths among men and companion animals, such as dogs. However, despite its high mortality and incidence rates, the molecular mechanisms underlying this disease remain to be fully elucidated. Among the many factors involved in prostate carcinogenesis, the extracellular matrix (ECM) plays a crucial role.

View Article and Find Full Text PDF

The limited regenerative capacity in mammals has serious implications for cardiac tissue damage. Meanwhile, zebrafish has a high regenerative capacity, but the regulation of the heart healing process has yet to be elucidated. The dynamic nature of cardiac regeneration requires consideration of the inherent temporal dimension of this process.

View Article and Find Full Text PDF

Nile tilapia (Oreochromis niloticus) is a species of worldwide importance for aquaculture. A crossbred lineage was developed through introgressive backcross breeding techniques and combines the high growth performance of the Chitralada (CHIT) lwith attractive reddish color of the Red Stirling (REDS) strains. Since the crossbreed has an unknown genetically improved background, the objective of this work was to characterize expression signatures that portray the advantageous phenotype of the crossbreeds.

View Article and Find Full Text PDF

Overexpression of growth hormone (GH) in -transgenic zebrafish of a highly studied lineage F0104 has earlier been reported to cause increased muscle growth. In addition to this, GH affects a broad range of cellular processes in transgenic fish, such as morphology, physiology, and behavior. Reports show changes such as decreased sperm quality and reduced reproductive performance in transgenic males.

View Article and Find Full Text PDF

, known as "tambaqui", is the largest Characiformes fish in the Amazon River Basin and a leading species in Brazilian aquaculture and fisheries. Good quality meat and excellent adaptability to culture systems are some of its remarkable farming features. To support studies into the genetics and genomics of the tambaqui, we have produced the first high-quality genome for the species.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small noncoding RNAs with pivotal roles in the control of gene expression. By comparing the miRNA profiles of uninjured vs. regenerating tissues and structures, several studies have found that miRNAs are potentially involved in the regenerative process.

View Article and Find Full Text PDF

Background: During vertebrate evolution, the heart has undergone remarkable changes that lead to morphophysiological differences in the fully formed heart of these species, such as chamber septation, heart rate frequency, blood pressure, and cardiac output volume. Despite these differences, the heart developmental process is guided by a core gene set conserved across vertebrates. Nonetheless, the regulatory mechanisms controlling the expression of genes involved in heart development and maintenance are largely uncharted.

View Article and Find Full Text PDF

Nile tilapia is the third most cultivated fish worldwide and a novel model species for evolutionary studies. Aiming to improve productivity and contribute to the selection of traits of economic impact, biotechnological approaches have been intensively applied to species enhancement. In this sense, recent studies have focused on the multiple roles played by microRNAs (miRNAs) in the post-transcriptional regulation of protein-coding genes involved in the emergence of phenotypes with relevance for aquaculture.

View Article and Find Full Text PDF

MicroRNAs have been hypothesized to be involved in the regulation of male fertility potential. The primary aim of our study was to demonstrate the effects of transfection with dendrimer nanostructure on the parameters of bovine sperm quality and to investigate whether the microRNA profile could be disturbed after cationic dendrimer-mediated exogenous DNA transfection of bovine spermatozoa. The binding of exogenous DNA was significantly increased when dendrimer-based transfection was implemented.

View Article and Find Full Text PDF

The Nile tilapia (Oreochromis niloticus) is a prominent farmed fish in aquaculture worldwide. Crossbreeding has recently been carried out between the Red-Stirling and the wt Chitralada strains of Nile tilapia, producing a heterotic hybrid (7/8 Chitralada and 1/8 Red-Stirling) that combines the superior growth performance of the Chitralada with the reddish coloration of the Red-Stirling strain. While classical selective breeding and crossbreeding strategies are well known, the molecular mechanisms underlying the phenotypic expression of economically advantageous traits in tilapia remain largely unknown.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are non-coding RNAs that regulate a wide range of biological pathways by post-transcriptionally modulating gene expression levels. Given that even a single miRNA may simultaneously control several genes enrolled in multiple biological functions, one would expect that these tiny RNAs have the ability to properly sort among distinctive cellular processes to drive protein production. To test this hypothesis, we scrutinized previously published microarray datasets and clustered protein-coding gene expression profiles according to the intensity of fold-change levels caused by the exogenous transfection of 10 miRNAs (miR-1, miR-7, miR-9, miR-124, miR-128a, miR-132, miR-133a, miR-142, miR-148b, miR-181a) in a human cell line.

View Article and Find Full Text PDF

Ovarian cancer (OC) is a highly prevalent gynecological malignancy worldwide. Throughout ovarian carcinogenesis, the crosstalk between cellular components of the microenvironment, including tumor cells and fibroblasts, is proposed to play critical roles in cancer progression. The dysregulation of microRNA expression is also a pronounced feature of the OC.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are key regulators of gene expression in multicellular organisms. The elucidation of miRNA function and evolution depends on the identification and characterization of miRNA repertoire of strategic organisms, as the fast-evolving cichlid fishes. Using RNA-seq and comparative genomics we carried out an in-depth report of miRNAs in Nile tilapia (Oreochromis niloticus), an emergent model organism to investigate evo-devo mechanisms.

View Article and Find Full Text PDF

In the last decade, several studies have been focused on revealing the microRNA (miRNA) repertoire and determining their functions in farm animals such as poultry, pigs, cattle, and fish. These small non-protein coding RNA molecules (18-25 nucleotides) are capable of controlling gene expression by binding to messenger RNA (mRNA) targets, thus interfering in the final protein output. MiRNAs have been recognized as the main regulators of biological features of economic interest, including body growth, muscle development, fat deposition, and immunology, among other highly valuable traits, in aquatic livestock.

View Article and Find Full Text PDF

Silversides are fish that inhabit marine coastal waters, coastal lagoons, and estuarine regions in southern South America. The freshwater (FW) silversides have the ability to tolerate salinity variations. have similar habitats and biological characteristics of congeneric , the most studied silverside species and with great economic importance.

View Article and Find Full Text PDF

Phosphorus (P) is an essential mineral for the development and maintenance of the vertebrate skeletal system. Modulation of P levels is believed to influence metabolism and the physiological responses of gene expression. In this study, we investigated the influence of dietary P on skeletal deformities and osteocalcin gene expression in zebrafish (), and sought to determine appropriate levels in a diet.

View Article and Find Full Text PDF

Target prediction is generally the first step toward recognition of bona fide microRNA (miRNA)-target interactions in living cells. Several target prediction tools are now available, which use distinct criteria and stringency to provide the best set of candidate targets for a single miRNA or a subset of miRNAs. However, there are many false-negative predictions, and consensus about the optimum strategy to select and use the output information provided by the target prediction tools is lacking.

View Article and Find Full Text PDF

Hox gene clusters encode a family of transcription factors that govern anterior-posterior axis patterning during embryogenesis in all bilaterian animals. The time and place of Hox gene expression are largely determined by the relative position of each gene within its cluster. Furthermore, Hox genes were shown to have their expression fine-tuned by regulatory microRNAs (miRNAs).

View Article and Find Full Text PDF

Background: Hyacinth macaw Anodorhynchus hyacinthinus is the largest parrot of the world and is considered vulnerable to extinction due to its habitat loss and illegal trade associated to the international pet market demand. Genetic studies on this species are still incipient to generate a consistent characterization of the population dynamics and to develop appropriate conservation strategies. In this sense, microsatellite markers may support the detection of a population genetic structure for this bird species.

View Article and Find Full Text PDF