Publications by authors named "Pingying Liu"

Article Synopsis
  • Hydrogen production from seawater electrolysis paired with renewable energy can cut costs, but corrosive seawater limits its commercial use.
  • A new catalyst, NiFeBa-LDH, successfully protects the electrolytic anode in seawater by using SO in the electrolyte, showing impressive stability for over 10,000 hours.
  • The research reveals that atomically dispersed Ba helps create a protective layer, enhancing the potential for practical seawater electrolysis technology commercialization due to its effective and straightforward design.
View Article and Find Full Text PDF

Although hydrogen gas (H ) storage might enable offshore renewable energy to be stored at scale, the commercialization of technology for H generation by seawater electrolysis depends upon the development of methods that avoid the severe corrosion of anodes by chloride (Cl ) ions. Here, it is revealed that the stability of an anode used for seawater splitting can be increased by more than an order of magnitude by loading Ag nanoparticles on the catalyst surface. In experiments, an optimized NiFe-layered double hydroxide (LDH)@Ag electrode displays stable operation at 400 mA cm in alkaline saline electrolyte and seawater for over 5000 and 2500 h, respectively.

View Article and Find Full Text PDF

Novel resources of very small granular starch are of great interests to food scientists. We previously found Chlorella sp. MBFJNU-17 contained small granular starch but whether the MBFJNU-17 was a novel resource of very small granular starch remained unresolved.

View Article and Find Full Text PDF

We demonstrate a dialytic strategy for the synthesis of congeneric two-dimensional metal-organic framework (2D MOF) nanosheets with a dialysis membrane using 1,4-benzenedicarboxylic acid (BDC), 1,4-naphthalenedicarboxylic acid (NDC), and 9,10-anthracenedicarboxylic acid (ADC) as organic linkers and copper(II) as a metal precursor, respectively. Polyimide (PI) membranes containing these empty 2D MOF nanosheets exhibit distinct molecular sieve effects. Molecular dynamic simulation results reveal that the structures of MOF-polymer interfaces are designable by modifying the MOF interlayer distance and aperture size, which has significant influences on gas permeability and selectivity.

View Article and Find Full Text PDF

Smart metal-organic frameworks (MOFs) are constructed by introducing stimuli-responsive functional groups into MOF platforms. Through membrane systems containing smart MOFs, external field-modulated gas transport can be achieved, which finds potential applications in chemical engineering. In this work, we design a series of Mg-MOF-74-III-based frameworks functionalized by arylazopyrazole groups.

View Article and Find Full Text PDF

High-temperature pyrolysis of nitrogen (N)-rich, crystalline porous organic architectures in the presence of a metal precursor is an important chemical process in heterogeneous catalysis for the fabrication of highly porous N-carbon-supported metal catalysts. Herein, covalent triazine framework (CTF) and CTF-I (that is, CTF after charge modulation with iodomethane) are presented as sacrificial templates, for the synthesis of carbon-supported Ru catalysts-Ru-CTF-900 and Ru-CTF-I-900 respectively, following high-temperature pyrolysis at 900 °C under N atmosphere. Predictably, the dispersed Ru on pristine CTF carrier suffered severe sintering of the Ru nanoparticles (NPs) during heat treatment at 900 °C.

View Article and Find Full Text PDF

In the present study, a highly efficient strategy is reported using open framework platforms with abundant chelating ligands to fabricate a series of stable metal single-atom catalysts (SACs). Here, the metal ions are initially anchored onto the active bipyridine sites through postsynthetic modification, followed by pyrolysis and acid leaching. The resulting single metal atoms are uniformly distributed on a nitrogen-doped carbon (N-C) matrix.

View Article and Find Full Text PDF

Due to numerous merits, polyesters have been widely used for the preparation of porous scaffolds for biomedical applications. However, insufficient dimensional stability and weak cell interaction are two critical challenges to highly porous polyester scaffolds fulfilling their roles during applications. Here, we report the surface modification of PLGA scaffolds with air plasma for simultaneously tackling the dimensional shrinkage of PLGA scaffolds and improving scaffold-tissue integration.

View Article and Find Full Text PDF

Rechargeable magnesium (Mg) batteries assembled with dendrite-free, safe, and earth-abundant metal Mg anodes potentially have the advantages of high theoretical specific capacity and energy density. Nevertheless, owing to the large polarity of divalent Mg ions, the insertion of Mg into electrode materials suffers from sluggish kinetics, which seriously limit the performance of Mg batteries. Herein, we demonstrate an atomic substitution strategy for the controlled preparation of ultrathin black TiO (B-TiO) nanoflakes with rich oxygen vacancies (OVs) and porosity by utilizing ultrathin 2D TiS nanoflakes as precursors.

View Article and Find Full Text PDF

Postpartum depression is associated with adverse consequences for mother and offspring. The heritable ABO blood group has been associated with multiple diseases, including mental illness and diabetes. We explored the association of ABO blood group and postpartum depressive symptoms (PPDS) in a population-based cohort of pregnant Chinese women.

View Article and Find Full Text PDF

The unconventional O-H···C intramolecular hydrogen bonding and the effect of conformational changes on IR spectra of o-cresol in aqueous solutions were investigated by using molecular dynamics (MD) simulations, density functional theory (DFT), and experiments. A facial rotational isomerization between global minimum with trans conformation and the cis isomer is predicted to take place in gas phase with a low barrier of about 3.7 kcal/mol through a vertical-like transition state.

View Article and Find Full Text PDF
Article Synopsis
  • The metalloprotein MerR serves as a mercury(II)-dependent transcriptional repressor-activator, showing high sensitivity and specificity to mercury, and is found in both Gram-negative and Gram-positive bacteria despite minimal sequence identity between them.
  • The crystal structure of mercury(II)-bound Tn501 MerR reveals a high affinity for mercury due to its unique metal-binding geometry and shows how the cation's state affects the protein's function through an allosteric network that connects the metal-binding and DNA-binding domains.
  • Comparisons with Bacillus MerR from Gram-positive bacteria highlight significant differences in their structural arrangements, suggesting distinct mechanisms for interacting with specific promoter DNA based on the arrangement of -35 and -10 elements.
View Article and Find Full Text PDF

An electrostatic potential (ESP)-based image segmentation method has been used to estimate the ability of proton donation and acceptance involved in ring-rod recognition. The relative binding strength of [2]rotaxane has also been further estimated from the difference of the characteristic image-segmentation derived ESP between proton donor and proton acceptor. The size and electrostatic compatibility criteria are introduced to guide the design of interlocked [2]rotaxane.

View Article and Find Full Text PDF

The interlocked ⟨rod | ring⟩ structures of pseudorotaxanes and [2]rotaxanes are usually maintained by the complex hydrogen-bonding (H-bonding) network between the rod and ring. Ab initio molecular dynamics (AIMD) using generalized energy-based fragmentation approach and polarizable force field (polar FF)-based molecular dynamics (MD) simulations were performed to investigate the conformational changes of mechanically interlocked systems and to obtain the ensemble-averaged NMR chemical shifts. Factor analysis (FA) demonstrates that the ring H-donor (2,6 pyridinedicarboxamide group) plays an important role in the ring-rod recognition.

View Article and Find Full Text PDF

Microscopic information on conformational flexibility and macrocycle-thread binding interactions is helpful in rational design of novel multistation molecular shuttles with interesting topology and functions. Molecular dynamics (MD) was applied to simulate conformational changes of thread and macrocycle of a three-station molecular shuttle in different chemical environments (vacuum, CD3CN-CDCl3 solution, and crystal). In contrast with the highly distorted thread conformation in the gas phase and nonpolar CDCl3 solution, the solvated thread in CD3CN-CDCl3 (1:1) mix solvents exhibited a relatively rigid structure.

View Article and Find Full Text PDF

It was found that spontaneous isomerization takes place between three isomers of a pillar[5]arene (P5)-based pseudo[1]rotaxane. The isomerization process could be monitored by (1)H NMR spectra in polar solvent and the geometric configurations of the three isomers were further evaluated by theoretical calculations. In the threaded forms, the alkyl side chain might be preorganized by intramolecular N-HO bonds between the urea group of the side chain and the methoxy group of the P5 and further stabilized by multiple interactions, including H-bonding, C-H∙∙∙π interactions, and the steric effect of the N-Boc moiety.

View Article and Find Full Text PDF