Background: Though case fatality rate (CFR) is widely used to reflect COVID-19 fatality risk, its use is limited by large temporal and spatial variation. Hospital mortality rate (HMR) is also used to assess the severity of COVID-19, but HMR data is not directly available globally. Alternative metrics are needed for COVID-19 severity and fatality assessment.
View Article and Find Full Text PDFThe mechanisms underlying specification of neuronal subtypes within the human nervous system are largely unknown. The blue (S), green (M), and red (L) cones of the retina enable high-acuity daytime and color vision. To determine the mechanism that controls S versus L/M fates, we studied the differentiation of human retinal organoids.
View Article and Find Full Text PDFAge-related macular degeneration (AMD) is a significant cause of vision loss in the elderly. The extent to which epigenetic changes regulate AMD progression is unclear. Here we globally profile chromatin accessibility using ATAC-Seq in the retina and retinal pigmented epithelium (RPE) from AMD and control patients.
View Article and Find Full Text PDFDual leucine zipper kinase (DLK) has been implicated in cell death signaling secondary to axonal damage in retinal ganglion cells (RGCs) and other neurons. To better understand the pathway through which DLK acts, we developed enhanced functional genomic screens in primary RGCs, including use of arrayed, whole-genome, small interfering RNA libraries. Explaining why DLK inhibition is only partially protective, we identify leucine zipper kinase (LZK) as cooperating with DLK to activate downstream signaling and cell death in RGCs, including in a mouse model of optic nerve injury, and show that the same pathway is active in human stem cell-derived RGCs.
View Article and Find Full Text PDFAstroglia are a morphologically diverse and highly abundant cell type in the CNS. Despite these obvious observations, astroglia still remain largely uncharacterized at the cellular and molecular level. In disease contexts such as amyotrophic lateral sclerosis (ALS), it has been widely shown that astroglia downregulate crucial physiological functions, become hypertrophied, reactive, and toxic to motor neurons.
View Article and Find Full Text PDFAstrocytes are instrumental to major brain functions, including metabolic support, extracellular ion regulation, the shaping of excitatory signaling events and maintenance of synaptic glutamate homeostasis. Astrocyte dysfunction contributes to numerous developmental, psychiatric and neurodegenerative disorders. The generation of adult human fibroblast-derived induced pluripotent stem cells (iPSCs) has provided novel opportunities to study mechanisms of astrocyte dysfunction in human-derived cells.
View Article and Find Full Text PDFAge-related macular degeneration (AMD) is a major cause of blindness in the western world. While genetic studies have linked both common and rare variants in genes involved in regulation of the complement system to increased risk of development of AMD, environmental factors, such as smoking and nutrition, can also significantly affect the risk of developing the disease and the rate of disease progression. Since epigenetics has been implicated in mediating, in part, the disease risk associated with some environmental factors, we investigated a possible epigenetic contribution to AMD.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis is a progressive disease characterized by the loss of upper and lower motor neurons, leading to paralysis of voluntary muscles. About 10% of all ALS cases are familial (fALS), among which 15-20% are linked to Cu/Zn superoxide dismutase (SOD1) mutations, usually inherited in an autosomal dominant manner. To date only one FDA approved drug is available which increases survival moderately.
View Article and Find Full Text PDFA hexanucleotide GGGGCC repeat expansion in the noncoding region of the C9ORF72 gene is the most common genetic abnormality in familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The function of the C9ORF72 protein is unknown, as is the mechanism by which the repeat expansion could cause disease. Induced pluripotent stem cell (iPSC)-differentiated neurons from C9ORF72 ALS patients revealed disease-specific (1) intranuclear GGGGCCexp RNA foci, (2) dysregulated gene expression, (3) sequestration of GGGGCCexp RNA binding protein ADARB2, and (4) susceptibility to excitotoxicity.
View Article and Find Full Text PDFSynaptic plasticity induced by cocaine and other drugs underlies addiction. Here we elucidate molecular events at synapses that cause this plasticity and the resulting behavioral response to cocaine in mice. In response to D1-dopamine-receptor signaling that is induced by drug administration, the glutamate-receptor protein metabotropic glutamate receptor 5 (mGluR5) is phosphorylated by microtubule-associated protein kinase (MAPK), which we show potentiates Pin1-mediated prolyl-isomerization of mGluR5 in instances where the product of an activity-dependent gene, Homer1a, is present to enable Pin1-mGluR5 interaction.
View Article and Find Full Text PDFOligodendroglia support axon survival and function through mechanisms independent of myelination, and their dysfunction leads to axon degeneration in several diseases. The cause of this degeneration has not been determined, but lack of energy metabolites such as glucose or lactate has been proposed. Lactate is transported exclusively by monocarboxylate transporters, and changes to these transporters alter lactate production and use.
View Article and Find Full Text PDFGroup I metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, are G protein–coupled receptors (GPCRs) that are expressed at excitatory synapses in brain and spinal cord. GPCRs are often negatively regulated by specific G protein–coupled receptor kinases and subsequent binding of arrestin-like molecules. Here we demonstrate an alternative mechanism in which group I mGluRs are negatively regulated by proline-directed kinases that phosphorylate the binding site for the adaptor protein Homer, and thereby enhance mGluR–Homer binding to reduce signaling.
View Article and Find Full Text PDFBackground: Alcohol increases the expression of Group 1 metabotropic glutamate receptors (mGluRs) and their associated scaffolding protein Homer2 and stimulates phosphatidylinositol 3-kinase (PI3K) within the nucleus accumbens (NAC). Moreover, functional studies suggest that NAC Group 1 mGluR/Homer2/PI3K signaling may be a potential target for pharmacotherapeutic intervention in alcoholism.
Methods: Immunoblotting was conducted to examine the effects of alcohol consumption under drinking-in-the-dark (DID) procedures on Group 1 mGluR-associated proteins in C57BL/6J (B6) mice.
Background: Classical genetic studies provide strong evidence for heritable contributions to susceptibility to developing dependence on addictive substances. Candidate gene and genome-wide association studies (GWAS) have sought genes, chromosomal regions and allelic variants likely to contribute to susceptibility to drug addiction.
Results: Here, we performed a meta-analysis of addiction candidate gene association studies and GWAS to investigate possible functional mechanisms associated with addiction susceptibility.
Glutamate is the predominant excitatory amino acid neurotransmitter in the mammalian central nervous system (CNS). Glutamate transporter EAAT2/GLT-1 is the physiologically dominant astroglial protein that inactivates synaptic glutamate. Previous studies have shown that EAAT2 dysfunction leads to excessive extracellular glutamate and may contribute to various neurological disorders including amyotrophic lateral sclerosis (ALS).
View Article and Find Full Text PDFTo understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203). Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain.
View Article and Find Full Text PDFBackground: Vulnerabilities to dependence on addictive substances are substantially heritable complex disorders whose underlying genetic architecture is likely to be polygenic, with modest contributions from variants in many individual genes. "Nontemplate" genome wide association (GWA) approaches can identity groups of chromosomal regions and genes that, taken together, are much more likely to contain allelic variants that alter vulnerability to substance dependence than expected by chance.
Methodology/principal Findings: We report pooled "nontemplate" genome-wide association studies of two independent samples of substance dependent vs control research volunteers (n = 1620), one European-American and the other African-American using 1 million SNP (single nucleotide polymorphism) Affymetrix genotyping arrays.
Background: Dependences on addictive substances are substantially-heritable complex disorders whose molecular genetic bases have been partially elucidated by studies that have largely focused on research volunteers, including those recruited in Baltimore. Maryland. Subjects recruited from the Baltimore site of the Epidemiological Catchment Area (ECA) study provide a potentially-useful comparison group for possible confounding features that might arise from selecting research volunteer samples of substance dependent and control individuals.
View Article and Find Full Text PDF'Cell adhesion molecules' (CAMs) are essential elements of cell/cell communication that are important for proper development and plasticity of a variety of organs and tissues. In the brain, appropriate assembly and tuning of neuronal connections is likely to require appropriate function of many cell adhesion processes. Genetic studies have linked and/or associated CAM variants with psychiatric, neurologic, neoplastic, immunologic and developmental phenotypes.
View Article and Find Full Text PDFRecent aggregation of evidence for the roles of endogenous agonist and receptor systems that are mimicked or activated by cannabanoid ligands has provided a focus for work that has elucidated details of some of the multiple physiological roles and pharmacological functions that these systems play in brain and peripheral tissues. This chapter reviews some of the approaches to improved elucidation of these systems, with special focus on the human genes that encode cannabanoid receptors and the variants in these receptors that appear likely to contribute to human addiction vulnerabilities.
View Article and Find Full Text PDFThe activities of PP1 (protein phosphatase 1), a principal cellular phosphatase that reverses serine/threonine protein phosphorylation, can be altered by inhibitors whose activities are themselves regulated by phosphorylation. We now describe a novel PKC (protein kinase C)-dependent PP1 inhibitor, namely GBPI (gut and brain phosphatase inhibitor). The shorter mRNA that encodes this protein, GBPI-1, is expressed in brain, stomach, small intestine, colon and kidney, whereas a longer GBPI-2 splice variant mRNA is found in testis.
View Article and Find Full Text PDFThe dopamine transporter (DAT) modulates dopamine neurotransmission and is a primary target for psychostimulant influences on locomotion and reward. Selective DAT expression by dopaminergic neurons has led to use of cocaine analog DAT radioligands to assess rates of progression of dopamine neuronal degeneration in Parkinson's disease. We have documented that DAT is a phosphoprotein that is regulated by phosphorylation through pathways that include protein kinase C cascades.
View Article and Find Full Text PDFSheng Wu Yi Xue Gong Cheng Xue Za Zhi
June 2002
This study was firstly conducted to detect antinuclear antibody(ANA) titer by using number influorescence density analysis assay instead of serum diluted assay. The best camera explore time was selected. Then 4,140 ANA positive sera were detected to determine the relationship between number influorescence density (detected by number camera system Spot 32 and computer analysis software ipwin32) and serum diluted titer.
View Article and Find Full Text PDFSheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai)
January 1999
Partial sequences of 25 S ribosomal DNA for nine Candida yeast and one Kluyveromyces yeast strains were cloned and determined. We compared them with two published 25 S rDNA sequences of Saccharomyces cerevisiae and Candida albicans. An evolutionary tree of the twelve species was inferred from about 370 sites of 5' end of 25 S ribosomal DNA using the methods of neighbor-joining and bootstrap.
View Article and Find Full Text PDFcDNAs encoding KEPI, a novel protein kinase C (PKC)-potentiated inhibitory protein for type 1 Ser/Thr protein phosphatase (PP1), were identified. They were found among morphine-regulated brain mRNAs identified using subtracted differential display techniques. Full-length rat, mouse, and human cDNA and genomic sequences were elucidated with library screening and data base searching.
View Article and Find Full Text PDF