The accumulation of the deoxynivalenol (DON) in the human body poses a significant health risk that is often overlooked, and we urgently need an ultra-sensitive rapid detection platform. Due to the porosity of NH-MIL-101@MoS, an increased loading of toluidine blue (TB) serves to create a signal reference. Cobalt@carbon (CoC) derived from metal organic frameworks was combined with NH-MIL-101(NH-MIL-101@CoC) to form an enzyme-free Nanoprobe (Apt-pro) with significant catalytic properties.
View Article and Find Full Text PDFIn this study, the synthesis of Cu-MOF-199@multiwalled carbon nanotubes (Cu-MOF-199@MWCNTs) composites was achieved and utilized to create an advanced electrochemical sensor for creatinine (Cre) detection. The composites were modified on a glassy carbon electrode surface through direct drip coating, followed by the deposition of copper nanoparticles (CuNPs) via constant potential deposition. Characterized by various techniques and electrochemical analyses, the Cu-MOF-199@MWCNTs composite increased the CuNPs load, improving the detection sensitivity for Cre.
View Article and Find Full Text PDFA facile and novel Ce-MOF@MWCNTs@ZnO-modified glassy carbon electrode was prepared through drop coating and used for accurate and sensitive electrochemical detection of carbendazim. The modification of ZnO nanospheres and Ce-based metal-organic frameworks (Ce-MOFs), which possess vast surface/bulk ratio, large surface area, and excellent catalytic ability, provided more active sites for reaction. The combination of multi-walled carbon nanotubes endowed the modified electrode with excellent conductivity and greatly accelerated the electron transfer.
View Article and Find Full Text PDFIn this research, a signal-off electrochemical aptasensor with high sensitivity was constructed for trace detection of zearalenone (ZEN). Specifically, Ce-based metal-organic framework and multi-walled carbon nanotubes nanocomposite was functionalized with polyethyleneimine (P-Ce-MOF@MWCNTs) and served as sensing platform for its high surface area and excellent electrochemical active. Subsequently, toluidine blue (TB) was electrodeposited as the signal probe, and platinum@gold nanoparticles (Pt@Au) were dropped for the attachment of aptamer (ZEA).
View Article and Find Full Text PDFIn this paper, a novel electrochemical sensor was constructed for the detection of purine bases. Ultrafine carbide nanocrystals confined within porous nitrogen-doped carbon dodecahedrons (PNCD) were synthesized by adding molybdate to ZIF-8 followed by annealing. With MoC-based PNCDs (MC-PNCDs) as the carrier, gold nanoparticles (AuNPs) were deposited on the electrode surface via potentiostatic deposition as the promoter of electron transfer, forming a AuNPs/MC-PNCDs/activated glassy carbon electrode (AGCE) sensor.
View Article and Find Full Text PDF