Publications by authors named "Pingsheng Zhang"

Porous organic polymers (POPs) are attracting attention for their easy functionalization and potential as catalyst supports in olefin polymerization. In this study, sulfonated POP (s-POP) supported Ziegler-Natta catalysts were used for ethylene polymerization, producing ultra-high molecular weight polyethylene, with reaching up to 6.83 × 10 g mol.

View Article and Find Full Text PDF

In this paper, a 4L-shaped graphene patterned polarization-insensitive plasmon-induced transparency (PIT) metamaterial structure is proposed. The photoelectric switch based on this structure supports a variety of light sources, such as linearly polarized light with different polarization directions, left rotation circularly polarized light (LCP) and right rotation circularly polarized light (RCP). And the switch has excellent performance in the case of different light sources, the amplitude modulation is as high as 99.

View Article and Find Full Text PDF

Porous organic polymers (POPs) are highly versatile materials that find applications in adsorption, separation, and catalysis. Herein, a feasibility study on the design and synthesis of POP supports with a tunable pore structure and high ethylene-polymerization activity was conducted by the selection of functional comonomers and template agents, and control of cross-linking degree of their frameworks. Functionalized POPs with a tunable pore structure were designed and synthesized by a dispersion polymerization strategy.

View Article and Find Full Text PDF

This paper describes solid form control and particle size control of RG3487, a nicotinic receptor partial agonist. Four crystal forms were identified by polymorph screen under ∼100 varying conditions. Form A and Form B are anhydrates, while Forms C and D are solvates.

View Article and Find Full Text PDF

Transmetalation of 1-lithiotetrahydroisoquinolyloxazolines with magnesium halides affords Grignard reagents that add to aldehydes with up to 80% selectivity for one of the four possible diastereomeric products. An oxazoline chiral auxiliary derived from camphor provides an optimal blend of diastereoselectivity and isomer separability. Synthetic applications of the optimal auxiliary, patterned after a literature approach in the racemic series, comprise an improved (formal) synthesis of bicuculline, egenine, and corytensine, as well as an efficient synthesis of corlumine.

View Article and Find Full Text PDF