Publications by authors named "Pingoud A"

Nicking endonucleases (NEases) selectively cleave single DNA strands in double-stranded DNAs at a specific site. They are widely used in bioanalytical applications and in genome editing; however, the peculiarities of DNA-protein interactions for most of them are still poorly studied. Previously, it has been shown that the large subunit of heterodimeric restriction endonuclease BspD6I (Nt.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) have been described as a fundamental innate immune defence mechanism. They consist of a nuclear DNA backbone associated with different antimicrobial peptides (AMPs) which are able to engulf and kill pathogens. The AMP LL-37, a member of the cathelicidin family, is highly present in NETs.

View Article and Find Full Text PDF

This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it.

View Article and Find Full Text PDF

Nitrogen mustards are an important class of bifunctional alkylating agents routinely used in chemotherapy. They react with DNA as electrophiles through the formation of highly reactive aziridinium ion intermediates. The antibiotic 593A, with potential antitumor activity, can be considered a naturally occurring piperidine mustard containing a unique 3-chloropiperidine ring.

View Article and Find Full Text PDF

In this work, the possibility of constructing a thermo-switchable enzyme according to the "molecular gate" strategy is demonstrated. The approach is based on the covalent attachment of oligodeoxyribonucleotides to cysteine residues of an enzyme adjacent to its active center to form a temporal barrier for enzyme-substrate complex formation. The activity of the modified enzyme that had been studied here-the restriction endonuclease SsoII (R.

View Article and Find Full Text PDF

Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module.

View Article and Find Full Text PDF

Targeted genome engineering requires nucleases that introduce a highly specific double-strand break in the genome that is either processed by homology-directed repair in the presence of a homologous repair template or by non-homologous end-joining (NHEJ) that usually results in insertions or deletions. The error-prone NHEJ can be efficiently suppressed by 'nickases' that produce a single-strand break rather than a double-strand break. Highly specific nickases have been produced by engineering of homing endonucleases and more recently by modifying zinc finger nucleases (ZFNs) composed of a zinc finger array and the catalytic domain of the restriction endonuclease FokI.

View Article and Find Full Text PDF

Enoyl-acyl carrier protein reductase (ENR; the product of the fabI gene) is an important enzyme that is involved in the type II fatty-acid-synthesis pathway of bacteria, plants, apicomplexan protozoa and mitochondria. Harmful pathogens such as Mycobacterium tuberculosis and Plasmodium falciparum use the type II fatty-acid-synthesis system, but not mammals or fungi, which contain a type I fatty-acid-synthesis pathway consisting of one or two multifunctional enzymes. For this reason, specific inhibitors of ENR are attractive antibiotic candidates.

View Article and Find Full Text PDF

The human commensal pathogen Streptococcus pneumoniae expresses a number of virulence factors that promote serious pneumococcal diseases, resulting in significant morbidity and mortality worldwide. These virulence factors may give S. pneumoniae the capacity to escape immune defenses, resist antimicrobial agents, or a combination of both.

View Article and Find Full Text PDF

The DNA fragmentation factor is a heterodimeric complex that consists of caspase-activated DNase (CAD) and its inhibitor (ICAD). As only partial structural information on this nuclease/inhibitor complex is available, understanding of how its subunits interact on the molecular level remains largely elusive, particularly how CAD inhibition is achieved by ICAD. In this study, we used the SPOT (peptide array) method to identify protein-protein interaction sites in the DNA fragmentation factor complex, focusing on those possibly involved in CAD inhibition.

View Article and Find Full Text PDF

The restriction endonuclease PvuII has been introduced as a sequence-specific cleavage module in highly-specific nucleases for gene targeting. Here, a structural reorganization of the single-chain variant of PvuII (scPvuII) was performed by circular permutation as a proof-of-concept in order to find out whether the relocated, new termini next to structural elements important for DNA recognition and catalysis could be used for the fusion with other regulatory protein domains. Three circularly permuted variants of scPvuII were obtained that all maintain the specific endonucleolytic activity of scPvuII.

View Article and Find Full Text PDF

A functional coupling of photosensory domains derived from photoreceptors to effector proteins is a promising strategy for engineering novel photoresponsive proteins in optogenetics. Here, we have fused the light-sensitive LOV2 domain from Avena sativa phototropin1 to the restriction enzyme PvuII to generate a genetically encoded, light-controllable endonuclease. By analyzing several LOV-PvuII fusion enzymes, variants were obtained that show a 3-fold difference in DNA cleavage activity, when illuminated with blue light or kept in the dark.

View Article and Find Full Text PDF

The His-Asn-His (HNH) motif characterizes the active sites of a large number of different nucleases such as homing endonucleases, restriction endonucleases, structure-specific nucleases and, in particular, nonspecific nucleases. Several biochemical studies have revealed an essential catalytic function for the first amino acid of this motif in HNH nucleases. This histidine residue was identified as the general base that activates a water molecule for a nucleophilic attack on the sugar phosphate backbone of nucleic acids.

View Article and Find Full Text PDF

It has been proposed that certain type II restriction enzymes (REs), such as EcoRV, track the helical pitch of DNA as they diffuse along DNA, a so-called rotation-coupled sliding. As of yet, there is no direct experimental observation of this phenomenon, but mounting indirect evidence gained from single-molecule imaging of RE-DNA complexes support the hypothesis. We address this issue by conjugating fluorescent labels of varying size (organic dyes, proteins and quantum dots) to EcoRV, and by fusing it to the engineered Rop protein scRM6.

View Article and Find Full Text PDF

Zinc-finger nucleases (ZFNs) typically consist of three to four zinc fingers (ZFs) and the non-specific DNA-cleavage domain of the restriction endonuclease FokI. In this configuration, the ZFs constitute the binding module and the FokI domain the cleavage module. Whereas new binding modules, e.

View Article and Find Full Text PDF

Zinc-finger nucleases and TALE nucleases are produced by combining a specific DNA-binding module and a non-specific DNA-cleavage module, resulting in nucleases able to cleave DNA at a unique sequence. Here a new approach for creating highly specific nucleases was pursued by fusing a catalytically inactive variant of the homing endonuclease I-SceI, as DNA binding-module, to the type IIP restriction enzyme PvuII, as cleavage module. The fusion enzymes were designed to recognize a composite site comprising the recognition site of PvuII flanked by the recognition site of I-SceI.

View Article and Find Full Text PDF

A novel method for regulating the activity of homodimeric proteins--"molecular gate" approach--was proposed and its usefulness illustrated for the type II restriction endonuclease SsoII (R.SsoII) as a model. The "molecular gate" approach is based on the modification of R.

View Article and Find Full Text PDF

Regulation of proteins by light is a new and promising strategy for the external control of biological processes. In this study, we demonstrate the ability to regulate the catalytic activity of the MunI and PvuII restriction endonucleases with light. We used two different approaches to attach a photoremovable caging compound, 2-nitrobenzyl bromide (NBB), to functionally important regions of the two enzymes.

View Article and Find Full Text PDF

EndA is a sequence non-specific endonuclease that serves as a virulence factor during Streptococcus pneumoniae infection. Expression of EndA provides a strategy for evasion of the host's neutrophil extracellular traps, digesting the DNA scaffold structure and allowing further invasion by S. pneumoniae.

View Article and Find Full Text PDF

EndA is a membrane-attached surface-exposed DNA-entry nuclease previously known to be required for genetic transformation of Streptococcus pneumoniae. More recent studies have shown that the enzyme also plays an important role during the establishment of invasive infections by degrading extracellular chromatin in the form of neutrophil extracellular traps (NETs), enabling streptococci to overcome the innate immune system in mammals. As a virulence factor, EndA has become an interesting target for future drug design.

View Article and Find Full Text PDF

For many applications it would be desirable to be able to control the activity of proteins by using an external signal. In the present study, we have explored the possibility of modulating the activity of a restriction enzyme with light. By cross-linking two suitably located cysteine residues with a bifunctional azobenzene derivative, which can adopt a cis- or trans-configuration when illuminated by UV or blue light, respectively, enzymatic activity can be controlled in a reversible manner.

View Article and Find Full Text PDF

Derivatives of azobenzene which contained a maleimide group in one of the benzene rings (for binding to a protein cysteine residue) and maleimide, hydroxyl, or carboxyl substitutes in another benzene ring were synthesized. The reactivity of these compounds towards a cysteine residue of a protein and their optical properties in a free state and after their attachment to the mutant forms of the SsoII restriction endonuclease were studied.

View Article and Find Full Text PDF