In this study, asymmetric AlO-SiO Janus nanoparticles with a dumbbell-like structure were synthesized by a facile chemical process in the aqueous phase. Prior to synthesis, AlO nanoparticles in hydrosol were amino-modified using 3-aminopropyl triethoxysilane (KH550) and then carboxyl acid-functionalized using a ring-opening reaction of the amine functions with succinic anhydride, imparting unique anionic properties to the AlO end. SiO nanoparticles were rendered hydrophobic through modification with hexamethyldisilazane (HMDS) and further functionalized with 3-chloropropyl triethoxysilane (KH230).
View Article and Find Full Text PDFIn order to study the matching relationship between polymer(HPAM) molecular weight and reservoir permeability, in this paper, the injection performance of polymers with different molecular weights in rock cores with different permeability is studied. Using nuclear magnetic resonance technology combined with conventional core displacement equipment, the change law of the displacement process was analyzed from three aspects of nuclear magnetic resonance spectrum, core layering, and imaging. Finally, the fluidity of the polymer solution in the core was analyzed by injection pressure control features.
View Article and Find Full Text PDFThe preparation and classification of nanocellulose are briefly introduced, and the modification of nanocellulose and the application of modified nanocellulose in oilfield chemistry are reviewed. The principles and methods of surface modification, including surface adsorption, oxidation, acetylation, silanization, etherification, and polymer grafting, are summarized. Meanwhile, this paper focuses on the application of nanocellulose research progress in drilling fluid, enhanced oil recovery, and oilfield sewage treatment.
View Article and Find Full Text PDFThe preharvest drainage of rice paddy fields during the grain filling stage can result in a substantial mobilization of Cd in soil and, consequently, elevated grain Cd concentration. However, the processes controlling the mobilization of Cd remains poorly understood. Using 12 field-contaminated paddy soils, we investigated the factors controlling the temporal changes in Cd solubility in paddy soils that were incubated anaerobically for 40 d followed by a 20 d oxidation period.
View Article and Find Full Text PDFDynamically engineering the interfacial interaction of nanoparticles has emerged as a new approach for bottom-up fabrication of smart systems to tailor molecular diffusion and controlled release. Janus zwitterionic nanoplates are reported that can be switched between a locked and unlocked state at interfaces upon changing surface charge, allowing manipulation of interfacial properties in a fast, flexible, and switchable manner. Combining experimental and modeling studies, an unambiguous correlation is established among the electrostatic energy, the interface geometry, and the interfacial jamming states.
View Article and Find Full Text PDFWe demonstrate a facile route to in situ growth of lyotropic zirconium phosphate (ZrP) nanoplates on textiles via an interfacial crystal growing process. The as-prepared hybrid membrane shows a hierarchical architecture of textile fibers (porous platform for fluid transport), ZrP nanoplatelets (layered scaffolds for chemical barriers), and octadecylamine (organic species for superhydrophobic functionalization). Interestingly, such a hybrid membrane is able to separate the oily wastewater with a high separation efficiency of 99.
View Article and Find Full Text PDFThe self-organization of five model side-chain decorated polyaromatic asphaltene molecules with or without toluene solvent was investigated by means of atomistic molecular dynamic (MD) simulations. It was found that the organizational structure of polycyclic asphaltene molecules is significantly affected by the position and length of side chains. In the present study, two types of phase-separated stacking configurations, including the phase separated lamellar structure (PSLS) and the phase separated columnar structure (PSCS), were found.
View Article and Find Full Text PDFThe detachment process of an oil molecular layer situated above a horizontal substrate was often described by a three-stage process. In this mechanism, the penetration and diffusion of water molecules between the oil phase and the substrate was proposed to be a crucial step to aid in removal of oil layer/drops from substrate. In this work, the detachment process of a two-dimensional alkane molecule layer from a silica surface in aqueous surfactant solutions is studied by means of molecular dynamics (MD) simulations.
View Article and Find Full Text PDFUsing two types of triol ligands, several novel asymmetrically triol-functionalized Anderson organic hybrids have been efficiently synthesized in high purity and good yields via a convenient two-step esterification reaction. These organic-inorganic hybrids are chiral and can be spontaneously resolved with suitable solvents. Their molecular and crystal structures have been confirmed by single-crystal X-ray diffraction studies.
View Article and Find Full Text PDFSilica coatings with refractive indices as low as 1.10 were prepared via a one-step base-catalysed sol-gel process using methyltriethoxysilane and tetraethoxysilane as co-precursors. No expensive equipment was required and the method did not require etching or high-temperature calcination.
View Article and Find Full Text PDF